903 research outputs found

    Jet-induced gauge field instabilities in the quark-gluon plasma: A kinetic theory approach

    Full text link
    We discuss the properties of the collective modes of a system composed by a thermalized quark-gluon plasma traversed by a relativistic jet of partons. The transport equations obeyed by the components of the plasma and of the jet are studied in the Vlasov approximation. Assuming that the partons in the jet can be described with a tsunami-like distribution function we derive the expressions of the dispersion law of the collective modes. Then the behavior of the unstable gauge modes of the system is analyzed for various values of the velocity of the jet, of the momentum of the collective modes and of the angle between these two quantities. We find that the most unstable modes are those with momentum orthogonal to the velocity of the jet and that these instabilities appear when the velocity of the jet is higher than a threshold value, which depends on the plasma and jet frequencies. The results obtained within the Vlasov approximation are compared with the corresponding results obtained using a chromohydrodynamical approach.The effect we discuss here suggests a possible collective mechanism for the description of the jet quenching phenomena in heavy ion collisions.Comment: 13 pages, 6 figure

    Masses, Oxygen and Carbon abundances in CHEPS dwarf stars

    Get PDF
    Reproduced with permission from Astronomy & Astrophysics. © 2019 ESOContext. We report the results from the determination of stellar masses, carbon, and oxygen abundances in the atmospheres of 107 stars from the Calan-Hertfordshire Extrasolar Planet Search (CHEPS) programme. Our stars are drawn from a population with a significantly super-solar metallicity. At least 10 of these stars are known to host orbiting planets. Aims. In this work, we set out to understand the behaviour of carbon and oxygen abundance in stars with different spectral classes, metallicities, and V sin i within the metal-rich stellar population. Methods. Masses of these stars were determined using data from Gaia DR2. Oxygen and carbon abundances were determined by fitting the absorption lines. We determined oxygen abundances with fits to the 6300.304 Å O I line, and we used 3 lines of the C I atom and 12 lines of the C 2 molecule for the determination of carbon abundances. Results. We determine masses and abundances of 107 CHEPS stars. There is no evidence that the [C/O] ratio depends on V sin i or the mass of the star within our constrained range of masses, i.e. 0.82 5 km s -1) are massive stars.Peer reviewedFinal Published versio

    VLT X-shooter spectroscopy of the nearest brown dwarf binary

    Full text link
    The aim of the project is to characterise both components of the nearest brown dwarf sytem to the Sun, WISE J104915.57-531906.1 (=Luhman16AB) at optical and near-infrared wavelengths. We obtained high signal-to-noise intermediate-resolution (R~6000-11000) optical (600-1000 nm) and near-infrared (1000-2480nm) spectra of each component of Luhman16AB, the closest brown dwarf binary to the Sun, with the X-Shooter instrument on the Very Large Telescope. We classify the primary and secondary of the Luhman16 system as L6-L7.5 and T0+/-1, respectively, in agreement with previous measurements published in the literature. We present measurements of the lithium pseudo-equivalent widths, which appears of similar strength on both components (8.2+/-1.0 Angstroms and 8.4+/-1.5 Angstroms for the L and T components, respectively). The presence of lithium (Lithium 7) in both components imply masses below 0.06 Msun while comparison with models suggests lower limits of 0.04 Msun. The detection of lithium in the T component is the first of its kind. Similarly, we assess the strength of other alkali lines (e.g. pseudo-equivalent widths of 6-7 Angstroms for RbI and 4-7 Angstroms for CsI) present in the optical and near-infrared regions and compare with estimates for L and T dwarfs. We also derive effective temperatures and luminosities of each component of the binary: -4.66+/-0.08 dex and 1305(+180)(-135) for the L dwarf and -4.68+/-0.13 dex and 1320(+185)(-135) for the T dwarf, respectively. Using our radial velocity determinations, the binary does not appear to belong to any of the well-known moving group. Our preliminary theoretical analysis of the optical and J-band spectra indicates that the L- and T-type spectra can be reproduced with a single temperature and gravity but different relative chemical abundances which impact strongly the spectral energy distribution of L/T transition objects.Comment: 12 pages, 9 figure, 3 tables, accepted to A&

    Holstein polaron in the presence of disorder

    Full text link
    Non-local, inhomogeneous and retarded response observed in experiments is reproduced by introducing the Inhomogeneous Momentum Average (IMA) method to study single polaron problems with disorder in the on-site potential and/or spatial variations of the electron-phonon couplings and/or phonon frequencies. We show that the electron-phonon coupling gives rise to an additional inhomogeneous, strongly retarded potential, which makes instant approximations questionable. The accuracy of IMA is demonstrated by comparison with results from the approximation free Diagrammatic Monte Carlo (DMC) method. Its simplicity allows for easy study of many problems that were previously unaccessible. As an example, we show how inhomogeneities in the electron-phonon coupling lead to nonlocal, retarded response in scanning tunneling microscopy (STM) images.Comment: 4 pages, 3 figure

    Electronic charge and orbital reconstruction at cuprate-titanate interfaces

    Full text link
    In complex transition metal oxide heterostructures of physically dissimilar perovskite compounds, interface phenomena can lead to novel physical properties not observed in either of their constituents. This remarkable feature opens new prospects for technological applications in oxide electronic devices based on nm-thin oxide films. Here we report on a significant electronic charge and orbital reconstruction at interfaces between YBa2Cu3O6 and SrTiO3 studied using local spin density approximation (LSDA) with intra-atomic Coulomb repulsion (LSDA+U). We show that the interface polarity results in the metallicity of cuprate-titanate superlattices with the hole carriers concentrated predominantly in the CuO2 and BaO layers and in the first interface TiO2 and SrO planes. We also find that the interface structural relaxation causes a strong change of orbital occupation of Cu 3d orbitals in the CuO2 layers. The concomitant change of Cu valency from +2 to +3 is related to the partial occupation of the Cu 3d3z2−r23d_{3z^2-r^2} orbitals at the interface with SrO planes terminating SrTiO3. Interface-induced predoping and orbital reconstruction in CuO2 layers are key mechanisms which control the superconducting properties of field-effect devices developed on the basis of cuprate-titanate heterostructures.Comment: 11 pages, 8 figures, to appear in the "Proceedings of Third Joint HLRB and KONWIHR Result and Reviewing Workshop", Springer 200

    Sakurai's Object: characterizing the near-infrared CO ejecta between 2003 and 2007

    Get PDF
    We present observations of Sakurai's Object obtained at 1–5 μm between 2003 and 2007. By fitting a radiative transfer model to an echelle spectrum of CO fundamental absorption features around 4.7 μm, we determine the excitation conditions in the line-forming region. We find 12C/13C = 3.5+2.0−1.5, consistent with CO originating in ejecta processed by the very late thermal pulse, rather than in the pre-existing planetary nebula. We demonstrate the existence of 2.2 × 10−6≤MCO≤ 2.7 × 10−6 M⊙ of CO ejecta outside the dust, forming a high-velocity wind of 500 ± 80 km s−1. We find evidence for significant weakening of the CO band and cooling of the dust around the central star between 2003 and 2005. The gas and dust temperatures are implausibly high for stellar radiation to be the sole contributor

    Temporal changes of the flare activity of Proxima Cen

    Full text link
    We study temporal variations of the emission lines of Halpha, Hepsilon, H and K Ca II, D1 and D2 Na I, 4026 and 5876 A He I in the HARPS spectra of Proxima Centauri across an extended time of 13.2 years, from May 27, 2004, to September 30, 2017. Aims. We analyse the common behaviour and differences in the intensities and profiles of different emission lines in flare and quiet modes of Proxima activity. Methods. We compare the pseudo-equivalent widths (pEW) and profiles of the emission lines in the HARPS high-resolution (R ~ 115,000) spectra observed at the same epochs. Results. All emission lines show variability with a timescale of at least 10 min. The strength of all lines except He I 4026 A correlate with \Halpha. During strong flares the `red asymmetry' appears in the Halpha emission line indicating the infall of hot condensed matter into the chromosphere with velocities greater than 100 km/s disturbing chromospheric layers. As a result, the strength of the Ca II lines anti-correlates with Halpha during strong flares. The He I lines at 4026 and 5876 A appear in the strong flares. The cores of D1 and D2 Na I lines are also seen in emission. During the minimum activity of Proxima Centauri, Ca II lines and Hepsilon almost disappear while the blue part of the Na I emission lines is affected by the absorption in the extending and condensing flows. Conclusions. We see different behaviour of emission lines formed in the flare regions and chromosphere. Chromosphere layers of Proxima Cen are likely heated by the flare events; these layers are cooled in the `non-flare' mode. The self-absorption structures in cores of our emission lines vary with time due to the presence of a complicated system of inward and outward matter flows in the absorbing layers.Comment: 22 pages, 12 Figures, accepted by A

    Activity at the Deuterium-Burning Mass Limit in Orion

    Full text link
    We report very intense and variable Halpha emission (pseudo-equivalent widths of ~180, 410 A) of S Ori 55, a probable free-floating, M9-type substellar member of the young sigma Orionis open star cluster. After comparison with state-of-the-art evolutionary models, we infer that S Ori 55 is near or below the cluster deuterium-burning mass borderline, which separates brown dwarfs and planetary-mass objects. We find its mass to be 0.008-0.015 Msun for ages between 1 Myr and 8 Myr, with ~0.012 Msun the most likely value at the cluster age of 3 Myr. The largest Halpha intensity reached the saturation level of log L(Halpha)/L(bol) = -3. We discuss several possible scenarios for such a strong emission. We also show that sigma Orionis M and L dwarfs have in general more Halpha emission than their older field spectral counterparts. This could be due to a decline in the strength of the magnetic field with age in brown dwarfs and isolated planetary-mass objects, or to a likely mass accretion from disks in the very young sigma Orionis substellar members.Comment: Accepted for publication in ApJ Letters. Nine pages (figures included
    • …
    corecore