623 research outputs found

    Modeling the spectrum of V4334 Sgr (Sakurai's Object)

    Get PDF
    Theoretical spectral energy distributions were computed for a grid of hydrogen-deficient and carbon-rich model atmospheres of T(eff) in the range of 5000-6250 K and log g = 1.0 - 0.0 by the technique of opacity sampling, taking into account continuous, molecular band and atomic line absorption. These energy distributions were compared with the spectrum of V4334 Sgr (Sakurai's object) of April, 1997 in the wavelength interval 300-1000 nm. We show that (1) the shape of the theoretical spectra depends strongly on T(eff) but only very weakly on the hydrogen abundance; (2) the comparison of the observed and computed spectra permits to estimate T(eff) approximately 5500 K for V4334 Sgr in April, 1997, and its interstellar reddening (plus a possible circumstellar contribution) E(B-V) approximately 0.70.Comment: 7 pages, 8 figures, LaTeX, accepted by Astronomy and Astrophysic

    Boron in Very Metal-Poor Stars

    Get PDF
    We have observed the B I 2497 A line to derive the boron abundances of two very metal-poor stars selected to help in tracing the origin and evolution of this element in the early Galaxy: BD +23 3130 and HD 84937. The observations were conducted using the Goddard High Resolution Spectrograph on board the Hubble Space Telescope. A very detailed abundance analysis via spectral synthesis has been carried out for these two stars, as well as for two other metal-poor objects with published spectra, using both Kurucz and OSMARCS model photospheres, and taking into account consistently the NLTE effects on the line formation. We have also re-assessed all published boron abundances of old disk and halo unevolved stars. Our analysis shows that the combination of high effective temperature (Teff > 6000 K, for which boron is mainly ionized) and low metallicity ([Fe/H]<-1) makes it difficult to obtain accurate estimates of boron abundances from the B I 2497 A line. This is the case of HD 84937 and three other published objects (including two stars with [Fe/H] ~ -3), for which only upper limits can be established. BD +23 3130, with [Fe/H] ~ -2.9 and logN(B)_NLTE=0.05+/-0.30, appears then as the most metal-poor star for which a firm measurement of the boron abundance presently exists. The evolution of the boron abundance with metallicity that emerges from the seven remaining stars with Teff < 6000 K and [Fe/H]<-1, for which beryllium abundances were derived using the same stellar parameters, shows a linear increase with a slope ~ 1. Furthermore, the B/Be ratio found is constant at a value ~ 20 for stars in the range -3<[Fe/H]<-1. These results point to spallation reactions of ambient protons and alpha particles with energetic particles enriched in CNO as the origin of boron and beryllium in halo stars.Comment: 38 pages, 11 Encapsulated Postscript figures (included), uses aaspp4.sty. Accepted for publication in The Astrophysical Journal. The preprint is also available at: http://www.iac.es/publicaciones/preprints.htm

    Optical studies of the X-ray transient XTE J2123-058 -I. Photometry

    Get PDF
    We present optical photometry of the X-ray transient XTE J2123-058, obtained in July-October 1998. The light curves are strongly modulated on the 5.95hrs orbital period, and exhibit dramatic changes in amplitude and form during the decline. We used synthetic models which include the effect of partial eclipses and X-ray heating effects, to estimate the system parameters, and we constrain the binary inclination to be i=73+-4 degrees. The model is successful in reproducing the light curves at different stages of the decay by requiring the accretion disc to become smaller and thinner by 30% as the system fades by 1.7 mags in the optical. From Aug 26 the system reaches quiescence with a mean magnitude of R=21.7+-0.1 and our data are consistent with the optical variability being dominated by the companion's ellipsoidal modulation.Comment: 6 pages, 6 figure

    Masses, Oxygen and Carbon abundances in CHEPS dwarf stars

    Get PDF
    Reproduced with permission from Astronomy & Astrophysics. © 2019 ESOContext. We report the results from the determination of stellar masses, carbon, and oxygen abundances in the atmospheres of 107 stars from the Calan-Hertfordshire Extrasolar Planet Search (CHEPS) programme. Our stars are drawn from a population with a significantly super-solar metallicity. At least 10 of these stars are known to host orbiting planets. Aims. In this work, we set out to understand the behaviour of carbon and oxygen abundance in stars with different spectral classes, metallicities, and V sin i within the metal-rich stellar population. Methods. Masses of these stars were determined using data from Gaia DR2. Oxygen and carbon abundances were determined by fitting the absorption lines. We determined oxygen abundances with fits to the 6300.304 Å O I line, and we used 3 lines of the C I atom and 12 lines of the C 2 molecule for the determination of carbon abundances. Results. We determine masses and abundances of 107 CHEPS stars. There is no evidence that the [C/O] ratio depends on V sin i or the mass of the star within our constrained range of masses, i.e. 0.82 5 km s -1) are massive stars.Peer reviewedFinal Published versio

    Electronic charge and orbital reconstruction at cuprate-titanate interfaces

    Full text link
    In complex transition metal oxide heterostructures of physically dissimilar perovskite compounds, interface phenomena can lead to novel physical properties not observed in either of their constituents. This remarkable feature opens new prospects for technological applications in oxide electronic devices based on nm-thin oxide films. Here we report on a significant electronic charge and orbital reconstruction at interfaces between YBa2Cu3O6 and SrTiO3 studied using local spin density approximation (LSDA) with intra-atomic Coulomb repulsion (LSDA+U). We show that the interface polarity results in the metallicity of cuprate-titanate superlattices with the hole carriers concentrated predominantly in the CuO2 and BaO layers and in the first interface TiO2 and SrO planes. We also find that the interface structural relaxation causes a strong change of orbital occupation of Cu 3d orbitals in the CuO2 layers. The concomitant change of Cu valency from +2 to +3 is related to the partial occupation of the Cu 3d3z2r23d_{3z^2-r^2} orbitals at the interface with SrO planes terminating SrTiO3. Interface-induced predoping and orbital reconstruction in CuO2 layers are key mechanisms which control the superconducting properties of field-effect devices developed on the basis of cuprate-titanate heterostructures.Comment: 11 pages, 8 figures, to appear in the "Proceedings of Third Joint HLRB and KONWIHR Result and Reviewing Workshop", Springer 200

    Josephson Vortex Lattice Melting in Bi-2212

    Get PDF
    In a recent study The experiment was conducted on overdoped Bi-2212 layered structures (mesas) (see We measured the oscillating Josephson vortex flow resistance of the mesa as a function of the parallel magnetic field at several constant temperatures, with a small temperature step (see The experimentally determined Josephson vortex lattice melting diagram is consistent with the theoretical model. The maximum temperature T 0 at which the BKT phase exists corresponds to zero-field BKT transition. The critical field B * estimated for our samples with γ = 500 [11] is 0.5 T, which is close to the measured 0.6-0.7 T. The upper boundary of the triangularlattice state is also in qualitative agreement with the theoretically predicted melting line B ( T ): the field B increases with decreasing T . The continuous decrease to zero in oscillation amplitude with increasing temperature or magnetic field suggests that the boundary corresponds to a second-order phase transition. This points to a melting transition to a BKT state, because the melting transition from Josephson-lattice to BKT state must be a second-order transition at γ &gt; 9 and B &gt; B * In contrast to the upper boundary, the lower boundary is characterized by rapid decrease in oscillation amplitude with applied field. Currently, the mechanism underlying the lower boundary is not well understood. The oscillations occur at B &gt; 0.5 T and are almost independent of temperature. This corresponds to the minimum of 5-7 triangular-lattice periods required for the commensuration. We believe that the lower boundary of triangular lattice states is associated with formation of a dense lattice. ACKNOWLEDGMENTS We thank A.M. Nikitina (Institute of Radio Engineering and Electronics, Russian Academy of Sciences) for providing us with single-crystal Bi-2212 whiskers. This work was supported under programs for collaboration between Russian Academy of Sciences and KOSEF (Republic of Korea) and between CRTBT (France) and IREE RAS (RFBR project no. 03-02-22001-NTsNI_a), as well as by Division of Physical Sciences of the RAS under the program &quot;Strongly correlated electron systems and quantum critical phenomena.&quot

    Two-dimensional electron liquid state at LaAlO3-SrTiO3 interfaces

    Full text link
    Using tunneling spectroscopy we have measured the spectral density of states of the mobile, two-dimensional electron system generated at the LaAlO3-SrTiO3 interface. As shown by the density of states the interface electron system differs qualitatively, first, from the electron systems of the materials defining the interface and, second, from the two-dimensional electron gases formed at interfaces between conventional semiconductors
    corecore