28 research outputs found

    Feature Informativeness, Curse-of-Dimensionality and Error Probability in Discriminant Analysis

    No full text
    This thesis is based on four papers on high-dimensional discriminant analysis. Throughout, the curse-of-dimensionality effect on the precision of the discrimination performance is emphasized. A growing dimension asymptotic approach is used for assessing this effect and the limiting error probability are taken as the performance criteria. A combined effect of a high dimensionality and feature informativeness on the discrimination performance is evaluated

    Graphical posterior predictive classifier:  Bayesian model averaging with particle Gibbs

    No full text
    In this study, we present a multi-class graphical Bayesian predictive classifier that incorporates the uncertainty in the model selection into the standard Bayesian formalism. For each class, the dependence structure underlying the observed features is represented by a set of decomposable Gaussian graphical models. Emphasis is then placed on the Bayesian model averaging which takes full account of the class-specific model uncertainty by averaging over the posterior graph model probabilities. An explicit evaluation of the model probabilities is well known to be infeasible. To address this issue, we consider the particle Gibbs strategy of Olsson et al. (2016) for posterior sampling from decomposable graphical models which utilizes the Christmas tree algorithm of Olsson et al. (2017) as proposal kernel. We also derive a strong hyper Markov law which we call the hyper normal Wishart law that allow to perform the resultant Bayesian calculations locally. The proposed predictive graphical classifier reveals superior performance compared to the ordinary Bayesian predictive rule that does not account for the model uncertainty, as well as to a number of out-of-the-box classifiers.QC 20170915</p

    Graphical posterior predictive classifier:  Bayesian model averaging with particle Gibbs

    No full text
    In this study, we present a multi-class graphical Bayesian predictive classifier that incorporates the uncertainty in the model selection into the standard Bayesian formalism. For each class, the dependence structure underlying the observed features is represented by a set of decomposable Gaussian graphical models. Emphasis is then placed on the Bayesian model averaging which takes full account of the class-specific model uncertainty by averaging over the posterior graph model probabilities. An explicit evaluation of the model probabilities is well known to be infeasible. To address this issue, we consider the particle Gibbs strategy of Olsson et al. (2016) for posterior sampling from decomposable graphical models which utilizes the Christmas tree algorithm of Olsson et al. (2017) as proposal kernel. We also derive a strong hyper Markov law which we call the hyper normal Wishart law that allow to perform the resultant Bayesian calculations locally. The proposed predictive graphical classifier reveals superior performance compared to the ordinary Bayesian predictive rule that does not account for the model uncertainty, as well as to a number of out-of-the-box classifiers

    Graphical posterior predictive classifier:  Bayesian model averaging with particle Gibbs

    No full text
    In this study, we present a multi-class graphical Bayesian predictive classifier that incorporates the uncertainty in the model selection into the standard Bayesian formalism. For each class, the dependence structure underlying the observed features is represented by a set of decomposable Gaussian graphical models. Emphasis is then placed on the Bayesian model averaging which takes full account of the class-specific model uncertainty by averaging over the posterior graph model probabilities. An explicit evaluation of the model probabilities is well known to be infeasible. To address this issue, we consider the particle Gibbs strategy of Olsson et al. (2016) for posterior sampling from decomposable graphical models which utilizes the Christmas tree algorithm of Olsson et al. (2017) as proposal kernel. We also derive a strong hyper Markov law which we call the hyper normal Wishart law that allow to perform the resultant Bayesian calculations locally. The proposed predictive graphical classifier reveals superior performance compared to the ordinary Bayesian predictive rule that does not account for the model uncertainty, as well as to a number of out-of-the-box classifiers.QC 20170915</p

    Graphical posterior predictive classifier:  Bayesian model averaging with particle Gibbs

    No full text
    In this study, we present a multi-class graphical Bayesian predictive classifier that incorporates the uncertainty in the model selection into the standard Bayesian formalism. For each class, the dependence structure underlying the observed features is represented by a set of decomposable Gaussian graphical models. Emphasis is then placed on the Bayesian model averaging which takes full account of the class-specific model uncertainty by averaging over the posterior graph model probabilities. An explicit evaluation of the model probabilities is well known to be infeasible. To address this issue, we consider the particle Gibbs strategy of Olsson et al. (2016) for posterior sampling from decomposable graphical models which utilizes the Christmas tree algorithm of Olsson et al. (2017) as proposal kernel. We also derive a strong hyper Markov law which we call the hyper normal Wishart law that allow to perform the resultant Bayesian calculations locally. The proposed predictive graphical classifier reveals superior performance compared to the ordinary Bayesian predictive rule that does not account for the model uncertainty, as well as to a number of out-of-the-box classifiers.QC 20170915</p
    corecore