27 research outputs found

    The thyrotropin receptor autoantigen in Graves disease is the culprit as well as the victim

    No full text
    Graves disease, a common organ-specific autoimmune disease affecting humans, differs from all other autoimmune diseases in being associated with target organ hyperfunction rather than organ damage. Clinical thyrotoxicosis is directly caused by autoantibodies that activate the thyrotropin receptor (TSHR). The etiology of Graves disease is multifactorial, with nongenetic factors playing an important role. Of the latter, there is the intriguing possibility that the molecular structure of the target antigen contributes to the development of thyroid-stimulatory autoantibodies (TSAb’s). Among the glycoprotein hormone receptors, only the TSHR undergoes intramolecular cleavage into disulfide-linked subunits with consequent shedding of some of the extracellular, autoantibody-binding A subunits. Functional autoantibodies do not arise to the noncleaving glycoprotein hormone receptors. Recently, TSAb’s were found to preferentially recognize shed, rather than attached, A subunits. Here we use a new adenovirus-mediated animal model of Graves disease to show that goiter and hyperthyroidism occur to a much greater extent when the adenovirus expresses the free A subunit as opposed to a genetically modified TSHR that cleaves minimally into subunits. These data show that shed A subunits induce or amplify the immune response leading to hyperthyroidism and provide new insight into the etiology of Graves disease

    Pathogenic Variant in ACTB, p.Arg183Trp, Causes Juvenile-Onset Dystonia, Hearing Loss, and Developmental Delay without Midline Malformation

    No full text
    ACTB encodes the β-actin, and pathogenic variations in this gene have typically been associated with Baraitser-Winter cerebrofrontofacial syndrome, a congenital malformation syndrome characterized by short stature, craniofacial anomalies, and cerebral anomalies. Here, we describe the third case with the p.Arg183Trp variant in ACTB causing juvenile-onset dystonia. Our patient has severe, intractable dystonia, developmental delay, and sensorineural hearing loss, besides hyperintensities in the caudate nuclei and putamen on the brain MRI, which is a distinct but overlapping phenotype with the previously reported case of identical twins with the same alteration in ACTB

    Haploinsufficiency as a disease mechanism in GNB1‐associated neurodevelopmental disorder

    No full text
    Abstract Background GNB1 encodes a subunit of a heterotrimeric G‐protein complex that transduces intracellular signaling cascades. Disruptions to the gene have previously been shown to be embryonic lethal in knockout mice and to cause complex neurodevelopmental disorders in humans. To date, the majority of variants associated with disease in humans have been missense variants in exons 5‐7. Methods Genetic sequencing was performed on two patients presenting with complex neurological phenotypes including intellectual disability, hypotonia, and in one patient seizures. Reported variants were assessed using RNA sequencing and functional BRET/BiFC assays. Results A splice variant reported in patient 1 was confirmed to cause usage of a cryptic splice site leading to a truncated protein product. Patient 2 was reported to have a truncating variant. BRET and BiFC assays of both patient variants confirmed both were deficient in inducing GPCR‐induced G protein activation due to lack of dimer formation with the Gγ subunit. Conclusion Here, we report two patients with functionally confirmed loss of function variants in GNB1 and neurodevelopmental phenotypes including intellectual disability, hypotonia, and seizures in one patient. These results suggest haploinsufficiency of GNB1 is a mechanism for neurodevelopmental disorders in humans

    The prevalence of diseases caused by lysosome-related genes in a cohort of undiagnosed patients

    No full text
    Lysosomal diseases (LD) comprise a group of approximately 60 hereditary conditions caused by progressive accumulation of metabolites due to defects in lysosomal enzymes and degradation pathways, which lead to a wide range of clinical manifestations. The estimated combined incidence of LD is between 1 in 4000 to 1 in 13,000 live births, with recent data from pilot newborn screening studies showing even higher incidence. We aimed to determine the prevalence of the classical LD and other diseases caused by lysosome-related genes in our cohort of diagnostic odyssey patients. The Individualized Medicine Clinic at Mayo Clinic is increasingly utilizing whole exome sequencing (WES) to determine the genetic etiology of undiagnosed Mendelian disease. From September 2012 to April 2017, WES results from 350 patients with unexplained symptoms were reviewed. Disease-causing variants were identified in MYO6, CLN6, LRBA, KCTD7, and ARSB revealing a genetic diagnosis of a LD in 8 individuals from 5 families. Based on our findings, lysosome-related disorders may be collectively common, reaching up to 1.5% prevalence in a cohort of patients with undiagnosed diseases presenting to a genetics clinic

    Mutations in the V-ATPase Assembly Factor VMA21 Cause a Congenital Disorder of Glycosylation With Autophagic Liver Disease

    Get PDF
    Background and Aims Vacuolar H+-ATP complex (V-ATPase) is a multisubunit protein complex required for acidification of intracellular compartments. At least five different factors are known to be essential for its assembly in the endoplasmic reticulum (ER). Genetic defects in four of these V-ATPase assembly factors show overlapping clinical features, including steatotic liver disease and mild hypercholesterolemia. An exception is the assembly factor vacuolar ATPase assembly integral membrane protein (VMA21), whose X-linked mutations lead to autophagic myopathy. Approach and Results Here, we report pathogenic variants in VMA21 in male patients with abnormal protein glycosylation that result in mild cholestasis, chronic elevation of aminotransferases, elevation of (low-density lipoprotein) cholesterol and steatosis in hepatocytes. We also show that the VMA21 variants lead to V-ATPase misassembly and dysfunction. As a consequence, lysosomal acidification and degradation of phagocytosed materials are impaired, causing lipid droplet (LD) accumulation in autolysosomes. Moreover, VMA21 deficiency triggers ER stress and sequestration of unesterified cholesterol in lysosomes, thereby activating the sterol response element-binding protein-mediated cholesterol synthesis pathways. Conclusions Together, our data suggest that impaired lipophagy, ER stress, and increased cholesterol synthesis lead to LD accumulation and hepatic steatosis. V-ATPase assembly defects are thus a form of hereditary liver disease with implications for the pathogenesis of nonalcoholic fatty liver disease.Peer reviewe

    Shared and Unique Susceptibility Genes in a Mouse Model of Graves’ Disease Determined in BXH and CXB Recombinant Inbred Mice

    No full text
    Susceptibility genes for TSH receptor (TSHR) antibodies and hyperthyroidism can be probed in recombinant inbred (RI) mice immunized with adenovirus expressing the TSHR A-subunit. The RI set of CXB strains, derived from susceptible BALB/c and resistant C57BL/6 (B6) mice, were studied previously. High-resolution genetic maps are also available for RI BXH strains, derived from B6 and C3H/He parents. We found that C3H/He mice develop TSHR antibodies, and some animals become hyperthyroid after A-subunit immunization. In contrast, the responses of the F1 progeny of C3H/He × B6 mice, as well as most BXH RI strains, are dominated by the B6 resistance to hyperthyroidism. As in the CXB set, linkage analysis of BXH strains implicates different chromosomes (Chr) or loci in the susceptibility to induced TSHR antibodies vs. hyperthyroidism. Importantly, BXH and CXB mice share genetic loci controlling the generation of TSHR antibodies (Chr 17, major histocompatibility complex region, and Chr X) and development of hyperthyroidism (Chr 1 and 3). Moreover, some chromosomal linkages are unique to either BXH or CXB strains. An interesting candidate gene linked to thyroid-stimulating antibody generation in BXH mice is the Ig heavy chain locus, suggesting a role for particular germline region genes as precursors for these antibodies. In conclusion, our findings reinforce the importance of major histocompatibility complex region genes in controlling the generation of TSHR antibodies measured by TSH binding inhibition. Moreover, these data emphasize the value of RI strains to dissect the genetic basis for induced TSHR antibodies vs. their effects on thyroid function in Graves’ disease
    corecore