6 research outputs found

    Submerged arc welding process peculiarities in application for Arctic structures

    No full text
    The paper focuses on the submerged arc welding (SAW) process in application to structures for Arctic conditions. One of the technical challenges for modern Arctic structures is to produce high-quality welds since a weld is usually the weakest part of any structure. Welding is especially difficult for the high strength steels (HSS), which are used in structures for weight-reduction purposes. The objective of the study is to explore the usability, development possibilities and parameters of SAW process for welding of thick cold-resistant HSS plates. Meeting this objective required in-depth understanding of the welding and material science background, which includes the quality requirements of weld joints intended for Arctic service as described in various standards, properties of cold-resistant HSS and description of testing methods used to validate welding joints for low temperature conditions. The study describes experimental findings that improve understanding of SAW process of thick quenched and tempered (QT) and thermo-mechanically processed (TMCP) HSS plates. Experiments were conducted to develop SAW procedures to weld several thick (exceeding 25 mm) high strengths (580–650 MPa tensile strength) cold-resistant (intended operational temperature at least −40 ℃) steel grades. The welds were evaluated by a wide range of industrial tests: analyses of chemical, microstructural and mechanical properties; hardness tests; and cold resistance evaluation tests: the Charpy V-notch impact test and the Crack tip opening displacement (CTOD) test. Acceptable welding parameters and recommendations were developed, and the results of the experiments show that high quality welds can be obtained using heat input up to 3.5 kJ/mm. © 2022. the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)</p

    Study of the sensitivity of high-strength cold-resistant shipbuilding steels to thermal cycle of arc welding

    No full text
    Abstract Background Structure and properties of welded joints of low-alloy thermomechanically processed (09G2FB) and quenched and tempered shipbuilding steels (10XN2MD, 08XN3MD, and 12XN3MF), welded with manual metal arc welding (MMA) and submerged arc welding (SAW), were studied. Methods Effects of specific energy input on the microstructure, mechanical properties, and impact energy of the heat-affected zone (HAZ) have been investigated, and probable reasons for crack formation in welded joints have been found. Results It was found that welding heat input increase leads to a significant increase in grain size near the fusion boundary and the formation of martensite with high hardness. Therefore, the heat input is recommended to be limited to 2.5–3.5 kJ/mm for these specific steel grades. Conclusions The study indicates that microalloying elements can be used to limit the grain growth when the steel is subjected to high temperatures during welding thermal cycle. Carbon content and alloying level reduction tend to increase the steel ductility and lower the HAZ toughness

    Numerical and Experimental Investigation of the Heat Input Effect on the Mechanical Properties and Microstructure of Dissimilar Weld Joints of 690-MPa QT and TMCP Steel

    No full text
    The study evaluates numerically and experimentally the effect of welding heat input parameters on the microstructure and hardness of the heat-affected zone (HAZ) of quenched and tempered (QT) and thermo-mechanically controlled process (TMCP) 690-MPa high-strength steel. Numerical analyses and experimental comparisons were applied using three heat input values (10, 14, and 17 kJ/cm) in order to predict the thermal fields during welding. Experimental analysis was carried out of the microstructure and microhardness behavior in different HAZ areas. The numerical values indicate that the maximum respective values of temperature measured in QT steel and TMCP steel were about 1300 and 1200 &deg;C for a heat input of 10 kJ/cm, 1400 and 1300 &deg;C for a heat input of 14 kJ/cm, and 1600 and 1450 &deg;C for a heat input of 17 kJ/cm. The cooling times resulted, for a heat input of 10 kJ/cm, in numerical t8/5 (14.5 s) and experimental (18.84 s) increases in hardness in the coarse-grain heat-affected zone (CGHAZ) of the QT steel (317 HV0.1), due to the formation of bainite and lath martensite structures with grain growth. Decreased hardness in the CGHAZ of TMCP steel (240 HV0.1) was caused by primary recrystallization of the microstructure and the formation of more equilibrium products of austenite decomposition. Increasing the heat input (14 to 17 kJ/cm) led to numerical t8/5 (29 s) and experimental (36 s) decreases in hardness in the CGHAZ of QT steel (270 HV0.1) due to the full austenite (thermal weld cycle), and maintained the relative value of TMCP steel (235 HV0.1)
    corecore