2 research outputs found

    Uncertainty of stochastic parametric approach to bone marrow dosimetry of 89,90Sr

    No full text
    The objective of this study is to evaluate the uncertainties of the dosimetric modeling of active marrow (AM) exposure from bone-seeking 89,90Sr. The stochastic parametric skeletal dosimetry (SPSD) model was specifically developed to study the long-term effects resulting from chronic 89,90Sr exposure in populations of the radioactively contaminated territories of the Southern Urals region of the Russian Federation. The method permits the evaluation of the dose factors (DF(AM ← TBV) and DF(AM ← CBV)), which convert the radionuclide activity concentration in trabecular (TBV) and cortical (CBV) bone volumes into dose rate in the AM, and their uncertainties. The sources of uncertainty can be subdivided into inherent uncertainties related to the individual variability of the simulated objects and introduced uncertainties related to model simplifications. Inherent uncertainty components are the individual variability of bone chemical composition, bone density, bone micro- and macro-architecture as well as AM distribution within the skeleton. The introduced uncertainties may result from the stylization of bone segment geometry, assumption of uniform cortical thickness, restriction of bone geometry and the selection of the applied voxel resolution.The inherent uncertainty depends on a number of factors of influence. Foremost, it is the result of variability of AM distribution within the skeleton. Another important factor is the variability of bone micro- and macro-architecture. The inherent uncertainty of skeletal-average dose factors was found to be about 40–50%. The introduced uncertainty associated with the SPSD model approach does not exceed 16% and mainly depends on the error of bone-shape stylization. The overall inherent and introduced uncertainties of DF(AM ← TBV) and DF(AM ← CBV) are below 55% and 63%, respectively. The results obtained will be incorporated into the stochastic version of the Techa River Dosimetry System (TRDS-2016MC) that provides multiple realizations of the annual doses for each cohort member to obtain both a central estimate of the individual dose and information on the dose uncertainty

    The radiation exposure of fish in the period of the Techa river peak contamination

    No full text
    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949–1956 resulted in downstream contamination of the river ecosystem. The discharged liquid waste contained both short-lived isotopes (95Zr, 95Nb, 103,106Ru, 141,144Ce, 91Y, 89Sr and 140Ba with half-life from 3 days to 1.02 years) and the long-lived 90Sr and 137Cs (half-life - 28.79 y and 30.07 y, respectively). Even now, when two half-lives of 90Sr and 137Cs have passed, the contamination in the upper river region (about 70 km from the source of releases) is still relatively high. Current anthropogenic dose rates calculated for the fish of the Techa River depend on the distance along the stream and decrease from 150 to 3 μGy day−1. Radiation exposure of fish is expected to have been much higher at the time of the releases. The aim of the study was to evaluate the dose rates for the most common fish species of the river, viz., roach (Rutilus rutilus), perch (Perca fluviatilis) and pike (Esox lucius), in the period of peak contamination of the upper reaches of the Techa River from 1950 to 1951. To achieve this objective, calculation of both internal and external dose rates was performed. For dose rate calculation, the contamination of the river compartments was modeled, body-size dependent dose coefficients were evaluated, morphometric data were analyzed. Maximum dose rates were obtained for roach; minimum – for pike, it depends on fish lifestyle (time spent at the bottom). In the period before September 1950, fish of the upper reaches are assessed to have been exposed to dose rates exceeding the screening level equal to 240 μGy day−1. From September 1950 up to the end of 1952 the fish dose rates along the Techa River were found to be close to the UNSCEAR threshold equal to 9.6 × 103 μGy day−1 or even much more higher (up to 1.9 × 105 μGy day−1). Extremely high historical dose rates did not lead to the difference in fish size and fish growth rate currently observed in the Techa River and in the comparison waterbody (the Miass River). Discussion includes the description of radiation effects observed currently in the river fish. Today the effects observed in hematopoietic system may be the consequence of radiation exposure of fish over several generations. For example, long term dwelling of fish in the radioactively contaminated environment leads to their adaptation to chronic radiation exposure. At the same time, an increase their sensitivity and decrease their adaptive capacity to respond to other stress factors can be observed
    corecore