85 research outputs found

    Numerical simulation of heat and mass transfer under the conditions of phase transitions and chemical reaction during ignition of condensed substances by single hot particles

    Get PDF
    Physical and mathematical models of heat and mass transfer under the conditions of phase transitions and chemical reactions have been developed for the numerical analysis of condensed substances ignition by a single particle (size from 0.5 mm to 5 mm) heated up to high temperature (above 800 K). Liquid, solid and gel fuels were considered as condensed substances. Metal and non-metal particles were used as ignition sources. A heat and mass transfer mathematical model is presented as a system of nonlinear non-stationary differential equations in the private derivatives corresponding to the basic provisions of the general theory of heat transfer in chemical kinetics and free convection. An algorithm for solving differential equations with the corresponding initial and boundary conditions is based on the finite- difference method. The locally one-dimensional method was used to solve difference analogous of differential equations. One-dimensional difference equations were solved using an implicit four-point difference scheme. Nonlinear equations were solved by the iteration method. Mathematical model verification and the assessment of numerical research results reliability was executed by its comparison with experimental results. Also the verification of the law of conservation of energy in the solution area of the ignition problem was performed. Besides, testing of applied numerical methods and the developed silving algorithm on the example of a group of less complex challenges of thermal conduction and thermal convection was held. The minimum parameters of hot particles (temperature, size) and the ignition delay time of condensed substances were determined for local heat sources with different shapes. The influence of thermal conduction, convection and radiative heat transfer mechanisms in the “particle – condensed substance” system was established on the ignition characteristics

    Numerical simulation of water and water emulsion droplets evaporation in flames with different temperatures

    Get PDF
    The models of heat and mass transfer and phase transition for “water droplet – flame” system have been developed using non-stationary nonlinear partial differential equations. The system of differential equations was solved by the finite-difference method. The locally one-dimensional method was used to solve the difference analogous of differential equations. One-dimensional differential equations were solved using an implicit four-point difference scheme. Nonlinear equations were solved by the iteration method. The evaporation rates of water droplets (with sizes from 0.05 mm to 5 mm) in the flame zone (at the temperatures from 500 K to 1200 K) were determined. Theoretical analysis established essentially nonlinear (close to exponential) form of dependence of the water droplet evaporation rate on the temperature of the external gas area and the temperature of a droplet surface. In particular, the water droplet evaporation rate varies from 0.25 to 0.29 kg/(m2s), when the temperature of external gas area is about 1100 K. On the other hand, the water droplet evaporation rate does not exceed 0.01 kg/(m2s) when the temperature of external gas area is about 350 K. Besides, it has been found out that droplets warm up at different rates depending on their initial temperature and velocity. As a result, the integral characteristics of droplet evaporation can increase substantially, when droplets move through the external gas area at the same temperature. We performed a similar investigation or droplet streams with droplet concentration 0.001–0.005 m3 in 1 m3 of gas area (typical parameters for modern spray extinguishing systems)

    Individual and synergistic effects of modifications of the carrier medium of carbon-containing slurries on the viscosity and sedimentation stability

    Get PDF
    The study is devoted to revealing the individual and synergistic effects of modifications of the carrier medium of the coal-water slurries (CWS) based on coking coal and carbon-containing flotation wastes of this coal on the effective viscosity and sedimentation stability. Synthetic and natural wetting agents as well as liquid solvents (alcohol, oil, conventional liquid fuel, methyl ethers) and solid organic compounds exemplified by sawdust are used for this. The relationships between the effective viscosity, water separation ratio, and zeta potential for the CWS with the separate addition of a wetting agent and a solvent is established. The categories of fuel compositions are identified according to the “stability” criterion. The synergistic effect of the additions of a wetting agent and a solvent on the sedimentation stability and effective viscosity is demonstrated. The physicochemical model of interaction between the solid particles and the additives in CWSs is proposed

    Droplet evaporation in water jet at the motion through high temperature gases

    Get PDF
    Abstract. Heat and mass transfer model for the numerical investigation of the evaporation process of a single droplet in water jet when moving through high temperature gases was developed. The integral characteristics of the process under investigation were calculated. The macroscopic regularities of water droplet evaporation, as elements of jet, in the high temperature gas mixture (as exemplified by combustion products of typical condensed substances) were determined

    Numerical Investigation of Water Droplets Shape Influence on Mathematical Modeling Results of Its Evaporation in Motion through a High-Temperature Gas

    Get PDF
    The numerical investigation of influence of a single water droplet shape on the mathematical modeling results of its evaporation in motion through high-temperature gases (combustion products of a typical condensed substance) has been executed. Values of evaporation time, motion velocity, and distance passed by various droplet shapes (cylinder, sphere, hemisphere, cone, and ellipsoid) in a high-temperature gases medium were analyzed. Conditions have been defined when a droplet surface configuration affects the integrated characteristics of its evaporation, besides temperature and combustion products concentration in a droplet trace, insignificantly. Experimental investigations for the verification of theoretical results have been carried out with using of optical diagnostic methods for two-phase gas-vapor-liquid flows

    ‎2D Planar Simulation of Collisions between Liquid Droplets and ‎Solid Particles in a Gas

    Get PDF
    Here we present a 2D planar simulation of the collisions between liquid droplets and solid particles that are most often used in industrial applications. The collisions are modeled using a combination of Volume of Fluid and Level Set methods. We study the impact of the particle-to-droplet size ratio and the shape of solid particles on the collision behavior and interaction regimes. The findings are presented in the form of collision regime maps. The interaction regimes are also distinguished for binary droplet collisions: deposition, separation, and disintegration. We show the impact of density, viscosity, and surface tension on the droplet collision regime maps as well as on the number of secondary fragments. The practical value of the research comes from the newly established differences of collision regimes between droplets and particles of different shapes and sizes

    Water Droplet With Carbon Particles Moving Through High-Temperature Gases

    Get PDF
    An experimental investigation was carried out on the influence of solid inclusions (nonmetallic particles with sizes from a few tens to hundreds of micrometers) on water droplet evaporation during motion through high-temperature gases (more than 1000 K). Optical methods for diagnostics of two-phase (gas and vapor-liquid) flows (particle image velocimetry (PIV) and interferometric particle imaging (IPI)) were used. It was established that introducing foreign solid particles into the water droplets intensifies evaporation rate in high-temperature gas severalfold. Dependence of liquid evaporation on sizes and concentration of solid inclusion were obtained

    Sustainability of Fossil Fuels

    Get PDF
    The energy and fuel industries represent an extensive field for the development and implementation of solutions aimed at improving the technological, environmental, and economic performance of technological cycles. In recent years, the issues of ecology and energy security have become especially important. Energy is firmly connected with all spheres of human economic life but, unfortunately, it also has an extremely negative (often fatal) effect on the environment and public health. Depletion of energy resources, the complexity of their extraction, and transportation are also problems of a global scale. Therefore, it is especially important nowadays to try to take care of nature and think about the resources that are necessary for future generations. For scientific teams in different countries, the development of sustainable and safe technologies for the use of fuels in the energy sector will be a challenge in the coming decade

    Water droplet deformation under the motion in gas area with subsonic velocities

    No full text
    The experimental investigation of water droplet deformation (characteristic dimensions 3 ÷ 6 mm) when moving through the gas area (air) with 1÷ 5 m/s velocities was carried out. The high-speed (delay time between the frames is less than 100 ns) tools of cross-correlation videorecording were used. A cyclic change nature of the droplet shapes (from close to spherical to conditionally ellipsoidal) was found. The characteristic times of “deformation cycles” and the maximal deviations of droplet dimensions relative to initial dimensions were determined. The influence of droplet velocities and its dimensions on the deformation characteristics was determined

    Structure of microprocessor-based automation system of oil pumping station “Alexndrovskaya”

    No full text
    Structure of microprocessed-based automation system (MBAS) of oil pumping station (OPS) «Alexandrovskaya», located on the territory of Tomsk region and forming part of the Oil Transporting Joint Stock Company «Transneft», developed in accordance with the requirements of the guidance document «Complex of the typical design choices automation of OPSs and crude storages on the basis of modern standard solutions and components»
    corecore