385 research outputs found
Metaheuristic approaches for the quartet method of hierarchical clustering
Given a set of objects and their pairwise distances, we wish to determine a visual representation of the data. We use the quartet paradigm to compute a hierarchy of clusters of the objects. The method is based on an NP-hard graph optimization problem called the Minimum Quartet Tree Cost problem. This paper presents and compares several metaheuristic approaches to approximate the optimal hierarchy. The performance of the algorithms is tested through extensive computational experiments and it is shown that the Reduced Variable Neighbourhood Search metaheuristic is the most effective approach to the problem, obtaining high quality solutions in short computational running times
Mechanical properties of calvarial bones in a mouse model for craniosynostosis
The mammalian cranial vault largely consists of five flat bones that are joined together along their edges by soft fibrous tissues called sutures. Premature closure of the cranial sutures, craniosynostosis, can lead to serious clinical pathology unless there is surgical intervention. Research into the genetic basis of the disease has led to the development of various animal models that display this condition, e.g. mutant type Fgfr2C342Y/+ mice which display early fusion of the coronal suture (joining the parietal and frontal bones). However, whether the biomechanical properties of the mutant and wild type bones are affected has not been investigated before. Therefore, nanoindentation was used to compare the elastic modulus of cranial bone and sutures in wild type (WT) and Fgfr2C342Y/+mutant type (MT) mice during their postnatal development. Further, the variations in properties with indentation position and plane were assessed. No difference was observed in the elastic modulus of parietal bone between the WT and MT mice at postnatal (P) day 10 and 20. However, the modulus of frontal bone in the MT group was lower than the WT group at both P10 (1.39±0.30 vs. 5.32±0.68 GPa; p<0.05) and P20 (5.57±0.33 vs. 7.14±0.79 GPa; p<0.05). A wide range of values was measured along the coronal sutures for both the WT and MT samples, with no significant difference between the two groups. Findings of this study suggest that the inherent mechanical properties of the frontal bone in the mutant mice were different to the wild type mice from the same genetic background. These differences may reflect variations in the degree of biomechanical adaptation during skull growth, which could have implications for the surgical management of craniosynostosis patients
A new three-step method for using inverse propensity weighting with latent class analysis
Bias-adjusted three-step latent class analysis (LCA) is widely popular to relate covariates to class membership. However, if the causal effect of a treatment on class membership is of interest and only observational data is available, causal inference techniques such as inverse propensity weighting (IPW) need to be used. In this article, we extend the bias-adjusted three-step LCA to incorporate IPW. This approach separates the estimation of the measurement model from the estimation of the treatment effect using IPW only for the later step. Compared to previous methods, this solves several conceptual issues and more easily facilitates model selection and the use of multiple imputation. This new approach, implemented in the software Latent GOLD, is evaluated in a simulation study and its use is illustrated using data of prostate cancer patients
- …