430 research outputs found

    Recovery of Hippocampal-Dependent Learning Despite Blunting Reactive Adult Neurogenesis after Alcohol Dependence

    Get PDF
    Background: The excessive alcohol drinking that occurs in alcohol use disorder (AUD) causes neurodegeneration in regions such as the hippocampus, though recovery may occur after a period of abstinence. Mechanisms of recovery are not clear, though reactive neurogenesis has been observed in the hippocampal dentate gyrus following alcohol dependence and correlates to recovery of granule cell number. Objective: We investigated the role of neurons born during reactive neurogenesis in the recovery of hippocampal learning behavior after 4-day binge alcohol exposure, a model of an AUD. We hypothesized that reducing reactive neurogenesis would impair functional recovery. Methods: Adult male rats were subjected to 4-day binge alcohol exposure and two approaches were tested to blunt reactive adult neurogenesis, acute doses of alcohol or the chemotherapy drug, temozolomide (TMZ). Results: Acute 5 g/kg doses of EtOH gavaged T6 and T7 days post binge did not inhibit significantly the number of Bromodeoxyuridine-positive (BrdU+) proliferating cells in EtOH animals receiving 5 g/kg EtOH versus controls. A single cycle of TMZ inhibited reactive proliferation (BrdU+ cells) and neurogenesis (NeuroD+ cells) to that of controls. However, despite this blunting of reactive neurogenesis to basal levels, EtOH-TMZ rats were not impaired in their recovery of acquisition of the Morris water maze (MWM), learning similarly to all other groups 35 days after 4-day binge exposure. Conclusions: These studies show that TMZ is effective in decreasing reactive proliferation/neurogenesis following 4-day binge EtOH exposure, and baseline levels of adult neurogenesis are sufficient to allow recovery of hippocampal function

    Binge Alcohol Exposure Transiently Changes the Endocannabinoid System: A Potential Target to Prevent Alcohol-Induced Neurodegeneration

    Get PDF
    Excessive alcohol consumption leads to neurodegeneration, which contributes to cognitive decline that is associated with alcohol use disorders (AUDs). The endocannabinoid system has been implicated in the development of AUDs, but little is known about how the neurotoxic effects of alcohol impact the endocannabinoid system. Therefore, the current study investigated the effects of neurotoxic, binge-like alcohol exposure on components of the endocannabinoid system and related N-acylethanolamines (NAEs), and then evaluated the efficacy of fatty acid amide hydrolase (FAAH) inhibition on attenuating alcohol-induced neurodegeneration. Male rats were administered alcohol according to a binge model, which resulted in a transient decrease in [3H]-CP-55,940 binding in the entorhinal cortex and hippocampus following two days, but not four days, of treatment. Furthermore, binge alcohol treatment did not change the tissue content of the three NAEs quantified, including the endocannabinoid and anandamide. In a separate study, the FAAH inhibitor, URB597 was administered to rats during alcohol treatment and neuroprotection was assessed by FluoroJade B (FJB) staining. The administration of URB597 during binge treatment did not significantly reduce FJB+ cells in the entorhinal cortex or hippocampus, however, a follow up “target engagement” study found that NAE augmentation by URB597 was impaired in alcohol intoxicated rats. Thus, potential alcohol induced alterations in URB597 pharmacodynamics may have contributed to the lack of neuroprotection by FAAH inhibition

    Effects of genetic deficiency of cyclooxygenase-1 or cyclooxygenase-2 on functional and histological outcomes following traumatic brain injury in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroinflammation contributes to the pathophysiology of acute CNS injury, including traumatic brain injury (TBI). Although prostaglandin lipid mediators of inflammation contribute to a variety of inflammatory responses, their importance in neuroinflammation is not clear. There are conflicting reports as to the efficacy of inhibiting the enzymes required for prostaglandin formation, cyclooxygenase (COX) -1 and COX-2, for improving outcomes following TBI. The purpose of the current study was to determine the role of the COX isoforms in contributing to pathological processes resulting from TBI by utilizing mice deficient in COX-1 or COX-2.</p> <p>Results</p> <p>Following a mild controlled cortical impact injury, the amount of cortical tissue loss, the level of microglial activation, and the capacity for functional recovery was compared between COX-1-deficient mice or COX-2-deficient mice, and their matching wild-type controls. The deficiency of COX-2 resulted in a minor (6%), although statistically significant, increase in the sparing of cortical tissue following TBI. The deficiency of COX-1 resulted in no detectable effect on cortical tissue loss following TBI. As determined by <sup>3</sup>[H]-PK11195 autoradiography, TBI produced a similar increase in microglial activation in multiple brain regions of both COX-1 wild-type and COX-1-deficient mice. In COX-2 wild-type and COX-2-deficient mice, TBI increased <sup>3</sup>[H]-PK11195 binding in all brain regions that were analyzed. Following injury, <sup>3</sup>[H]-PK11195 binding in the dentate gyrus and CA1 region of the hippocampus was greater in COX-2-deficient mice, as compared to COX-2 wild-type mice. Cognitive assessment was performed in the wild-type, COX-1-deficient and COX-2-deficient mice following 4 days of recovery from TBI. There was no significant cognitive effect that resulted from the deficiency of either COX-1 or COX-2, as determined by acquisition and spatial memory retention testing in a Morris water maze.</p> <p>Conclusion</p> <p>These findings suggest that the deficiency of neither COX-1 nor COX-2 is sufficient to alter cognitive outcomes following TBI in mice.</p

    Autoradiographic Localization of [3H]-Nisoxetine Binding Sites in the CNS of Male and Female Japanese Quail

    Get PDF
    Background In the central nervous system of mammals, transporters localized on the presynaptic nerve terminals regulate the reuptake of neurotransmitters. These transporters are selective for a specific neurotransmitter such as dopamine (DA) and norepinephrine (NE). Specifically in the synapse, the dopamine transporter (DAT) reuptakes DA and the norepinephrine transporter (NET) reuptakes NE. However previous research has found that avian species do not have a gene for DAT, and therefore, birds may be using the NET to clear both NE and DA from the synapse. The current study aimed to extend this finding by localizing NET expression in male and female Japanese quail (Coturnix japonica) brains using [3H]Nisoxetine, a selective NET blocker. Results High densities of binding sites were observed in the olfactory tubercle (OTu), the medial striatum (MSt), and the lateral striatum (LSt). Lower densities of binding sites were detected in the amygdala (AMY) and hypothalamus (Hyp), and low binding was found in the medial preoptic area (mPOA) and the pallium. Conclusion The areas with the highest densities of NET are also areas that previous research has shown to have high levels of DA activity but low levels of NE innervation (e.g. striatum). The distribution of this reuptake transporter is consistent with the theory that NET acts to clear both DA and NE from the synapse

    Morphological and Genetic Activation of Microglia after Diffuse Traumatic Brain Injury in the Rat

    Get PDF
    Traumatic brain injury (TBI) survivors experience long, term post-traumatic morbidities. In diffuse brain injured rats, a chronic sensory sensitivity to whisker stimulation models agitation in brain injury survivors and provides anatomical landmarks across the whisker-barrel circuit to evaluate traumatic neuropathology. As a consequence of TBI, acute and chronic microglial activation can contribute to degenerative and reparative events underlying post-traumatic morbidity. Here, we hypothesize that delayed microglial activation is concomitant with neuroplastic change after diffuse brain injury in the rat, by examining differential microglial activation states and neuroplasticity through gene and protein expression. Adult male, Sprague-Dawley rats were subjected to a single moderate midline fluid percussion (FPI) or sham injury. Microglial activation was determined by immunohistochemistry, receptor autoradiography, and quantitative real-time PCR in the primary somatosensory barrel field (S1 BF) and ventral posteromedial nucleus of the thalamus (VPM) at seven and 28 days following FPI. At seven days post-injury in both relays of the whisker circuit, classical activation (CD45) and acquired deactivation (TGFl, TGF R2) gene expression were elevated significantly above uninjured sham levels. Evidence for alternative activation (arginase I) was not observed. Daily anti-inflammatory ibuprofen administration (20 mg/kg, i . p.) significantly reduced evidence of classical activation, but had no effect on neuroplastic (GAP-43, synaptophysin) compared to saline vehicle. These data confirm concomitant classical activation and de-activation phenotypes of microglia after diffuse TBI, which are unlikely to impact injury-induced neuroplasticity that is typically associated with alternative microglial activation

    Functional Activation of Newborn Neurons Following Alcohol-Induced Reactive Neurogenesis

    Get PDF
    Abstinence after alcohol dependence leads to structural and functional recovery in many regions of the brain, especially the hippocampus. Significant increases in neural stem cell (NSC) proliferation and subsequent “reactive neurogenesis” coincides with structural recovery in hippocampal dentate gyrus (DG). However, whether these reactively born neurons are integrated appropriately into neural circuits remains unknown. Therefore, adult male rats were exposed to a binge model of alcohol dependence. On day 7 of abstinence, the peak of reactive NSC proliferation, rats were injected with bromodeoxyuridine (BrdU) to label dividing cells. After six weeks, rats underwent Morris Water Maze (MWM) training then were sacrificed ninety minutes after the final training session. Using fluorescent immunohistochemistry for c-Fos (neuronal activation), BrdU, and Neuronal Nuclei (NeuN), we investigated whether neurons born during reactive neurogenesis were incorporated into a newly learned MWM neuronal ensemble. Prior alcohol exposure increased the number of BrdU+ cells and newborn neurons (BrdU+/NeuN+ cells) in the DG versus controls. However, prior ethanol exposure had no significant impact on MWM-induced c-Fos expression. Despite increased BrdU+ neurons, no difference in the number of activated newborn neurons (BrdU+/c-Fos+/NeuN+) was observed. These data suggest that neurons born during alcohol-induced reactive neurogenesis are functionally integrated into hippocampal circuitry

    The Effects of Nicotine in the Neonatal Quinpirole Rodent Model of Psychosis: Neural Plasticity Mechanisms and Nicotinic Receptor Changes

    Get PDF
    Neonatal quinpirole (NQ) treatment to rats increases dopamine D2 receptor sensitivity persistent throughout the animal’s lifetime. In Experiment 1, we analyzed the role of α7 and α4β2 nicotinic receptors (nAChRs) in nicotine behavioral sensitization and on the brain-derived neurotrophic factor (BDNF) response to nicotine in NQ- and neonatally saline (NS)-treated rats. In Experiment 2, we analyzed changes in α7 and α4β2 nAChR density in the nucleus accumbens (NAcc) and dorsal striatum in NQ and NS animals sensitized to nicotine. Male and female Sprague-Dawley rats were neonatally treated with quinpirole (1 mg/kg) or saline from postnatal days (P)1–21. Animals were given ip injections of either saline or nicotine (0.5 mg/kg free base) every second day from P33 to P49 and tested on behavioral sensitization. Before each injection, animals were ip administered the α7 nAChR antagonist methyllycaconitine (MLA; 2 or 4 mg/kg) or the α4β2 nAChR antagonist dihydro beta erythroidine (DhβE; 1 or 3 mg/kg). Results revealed NQ enhanced nicotine sensitization that was blocked by DhβE. MLA blocked the enhanced nicotine sensitization in NQ animals, but did not block nicotine sensitization. NQ enhanced the NAcc BDNF response to nicotine which was blocked by both antagonists. In Experiment 2, NQ enhanced nicotine sensitization and enhanced α4β2, but not 7, nAChR upregulation in the NAcc. These results suggest a relationship between accumbal BDNF and α4β2 nAChRs and their role in the behavioral response to nicotine in the NQ model which has relevance to schizophrenia, a behavioral disorder with high rates of tobacco smoking

    Developmental Toxicity of Nicotine: A Transdisciplinary Synthesis and Implications for Emerging Tobacco Products

    Get PDF
    While the health risks associated with adult cigarette smoking have been well described, effects of nicotine exposure during periods of developmental vulnerability are often overlooked. Using MEDLINE and PubMed literature searches, books, reports and expert opinion, a transdisciplinary group of scientists reviewed human and animal research on the health effects of exposure to nicotine during pregnancy and adolescence. A synthesis of this research supports that nicotine contributes critically to adverse effects of gestational tobacco exposure, including reduced pulmonary function, auditory processing defects, impaired infant cardiorespiratory function, and may contribute to cognitive and behavioral deficits in later life. Nicotine exposure during adolescence is associated with deficits in working memory, attention, and auditory processing, as well as increased impulsivity and anxiety. Finally, recent animal studies suggest that nicotine has a priming effect that increases addiction liability for other drugs. The evidence that nicotine adversely affects fetal and adolescent development is sufficient to warrant public health measures to protect pregnant women, children, and adolescents from nicotine exposure
    corecore