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RESEARCH

Autoradiographic localization 
of [3H]‑Nisoxetine binding sites in the CNS 
of male and female Japanese quail
Shannon E. Eaton1*  , James R. Pauly2, Deann M. Hopkins2 and Chana K. Akins1 

Abstract 

Background:  In the central nervous system of mammals, transporters localized on the presynaptic nerve terminals 
regulate the reuptake of neurotransmitters. These transporters are selective for a specific neurotransmitter such as 
dopamine (DA) and norepinephrine (NE). Specifically in the synapse, the dopamine transporter (DAT) reuptakes DA 
and the norepinephrine transporter (NET) reuptakes NE. However previous research has found that avian species do 
not have a gene for DAT, and therefore, birds may be using the NET to clear both NE and DA from the synapse. The 
current study aimed to extend this finding by localizing NET expression in male and female Japanese quail (Coturnix 
japonica) brains using [3H]Nisoxetine, a selective NET blocker.

Results:  High densities of binding sites were observed in the olfactory tubercle (OTu), the medial striatum (MSt), and 
the lateral striatum (LSt). Lower densities of binding sites were detected in the amygdala (AMY) and hypothalamus 
(Hyp), and low binding was found in the medial preoptic area (mPOA) and the pallium.

Conclusion:  The areas with the highest densities of NET are also areas that previous research has shown to have high 
levels of DA activity but low levels of NE innervation (e.g. striatum). The distribution of this reuptake transporter is 
consistent with the theory that NET acts to clear both DA and NE from the synapse.

Keywords:  Norepinephrine transporter, Autoradiography, Dopamine reuptake, Japanese quail
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Background
It has long been accepted that the neurotransmitter 
dopamine (DA) plays a modulatory role in a variety of 
motivated behaviors such as feeding, reproductive behav-
ior, and defensive behaviors (Martin & Myers, 1976; 
Ottinger & Balthazart, 1987; Blackburn et al., 1992). Rela-
tively more recent studies have focused on the role of DA 
in learned reward-directed behaviors for food, sex, and 
drugs (i.e., Gómez-A et  al., 2020; Guadarrama-Bazante 
and Rodriquez-Manzo, 2019; Volkow et al., 2002). These 
studies suggest that dopamine’s functionality appears to 
be evident in all vertebrates, including birds and reptiles. 
Evidence for dopamine’s involvement in reward-related 

behaviors in birds comes from numerous studies on sex-
ual behavior and the use of dopamine agonists and antag-
onists in male Japanese quail. For example, Balthazart 
et al. (2002) found that administration of dopamine ago-
nists and antagonists profoundly influenced male sexual 
behavior either directly or in a modulatory fashion. Akins 
and her colleagues found that cocaine, a DA agonist, 
facilitated Pavlovian sexual conditioning and increased 
resistance to extinguish sexual conditioning (Akins et al., 
2017; Levens & Akins, 2004). Cocaine has also been 
found to dose dependently elicit a conditioned place pref-
erence (Levens & Akins, 2001) that can be blocked by a 
DA antagonist (Akins et al., 2004). Thus, the role of DA 
in evoking reward-directed behaviors appears to be con-
served in birds.

While there is significant evidence that dopamine’s 
functionality during reward-related events is similar in 
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birds as in mammals (e.g., Akins & Geary, 2008; Akins 
et al., 2004; Levens & Akins, 2001), dopamine’s availa-
bility and re-uptake in the synapse of the bird brain may 
differ from that of  the mammalian brain. Lovell et  al. 
(2015) investigated the evolution and brain expression 
of the dopamine transporter (DAT) gene in birds and 
reptiles. Using a combination of sequence alignments 
and synteny analysis, they found an absence of the DAT 
gene in birds (i.e., Zebra finch) and lizards (i.e., Green 
Anole). Further, their  in situ  hybridization technique 
indicated that the norepinephrine transporter (NET) 
was expressed in the nuclei of birds and reptiles where 
it was co-localized with DA cell markers. Lovell et  al. 
(2015) suggested that this modified NET expression 
may serve to functionally compensate for the loss of 
DAT in birds and reptiles. This is in contrast to mam-
mals in which NET and DAT appear to be segregated in 
distinct brain nuclei and cell types.

The purpose of the current study was to conduct 
autoradiography on the brain slices of Japanese quail to 
localize and determine the density of NETusing [3H]-
Nisoxetine, a potent and selective NET inhibitor. Male 
and female quail brains were analyzed to determine 
whether sex differences were present in NET localiza-
tion and/or density. The brain areas of interest were the 
medial and lateral striatum (MSt and LSt, respectively), 
olfactory tubercle (OTu), hypothalamus (Hyp), amygdala 
(AMY), and the medial preoptic area (mPOA). These 
regions of the brain were selected for analysis because 
they were previously investigated for DA content and 
expression of DA receptors in the quail brain by Ball and 
his colleagues (Ball et al., 1995; Cornil & Ball, 2008; Kleitz 
et  al., 2009). Our predictions about localization and 
density of NE transporters in these regions of the brain 
were based on Ball et al. (1995). Also, based on Ball et al. 
(1995), we predicted no sex differences in NE transport-
ers density between male and female quail in any region.

Methods
Animals
Male (N = 7) and female (N = 7) Japanese quail (Coturnix 
japonica) were hatched from eggs (Northwest Game-
birds, Kennewick, WA), raised at the University of Ken-
tucky, and used in the current experiment. All quail were 
individually housed on a 16:8 L:D cycle, had ad lib access 
to food and water, and had no environmental enrich-
ment. Quail were cared for according to the National 
Institutes of Health Guide for the Care and Use of Labo-
ratory Animals. Experimental procedures were approved 
by the Institutional Animal Care and Use Committee, 
and animal care was provided by the Division of Labora-
tory Animal Resources at the University of Kentucky.

Autoradiography
On post-hatch day 42, quail were rapidly decapitated 
and their brains were extracted and immediately fro-
zen using isopentane that had been chilled on a bed of 
dry ice. Frozen brains were stored at -80 ºC until sec-
tioning. A Leica CM1850 cryostat (Leica, Nussloch, 
Germany) was used to make 16  µm coronal sections 
that were thaw-mounted onto Superfrost Plus® slides 
(Fisher Scientific, Pittsburgh, PA, USA). After section-
ing, slides were stored under desiccation at 4 ºC over-
night and then stored at − 80 °C.

NET autoradiography was performed using [3H]-
Nisoxetine, as previously described (Tejani-Butt et  al., 
1990) with minor modifications. Sections were thawed 
in a desiccator overnight at 4  °C before being brought 
to room temperature. The sections were pre-incubated 
in Tris–HCl buffer (pH 7.4) containing Tris–HCl 
(50  mM), NaCl (300  mM), KCl (5  mM), for 10  min at 
4 °C before being placed in fresh Tris–HCl buffer with 
the addition of 1  nM [3H]-Nisoxetine for 4  h at 4  °C. 
After incubation, the sections were washed two times 
in Tris–HCl buffer for 5  min per wash followed by a 
5 min wash in deionized water. The sections were then 
allowed to dry overnight. After drying, the sections 
were exposed to tritium sensitive hyperfilm and stored 
in x-ray cassettes for six weeks. The films were then 
developed, imaged, and analyzed.

After the films were developed, images were digitized 
using a Macintosh-based image analysis system that 
included a Sony XC-77 CCD camera and a Scion LG-3 
frame-grabber. All images were then analyzed by a 
blinded experimenter using ImageJ (version 1.52, NIH, 
Bethesda MD, USA). Images on films that were blurry 
were excluded from the analyses. Binding is reported 
as uncalibrated optical density and NET binding in 
regions was quantified on 3 adjacent tissue sections.

Statistical analysis
All analyses were performed using IBM SPSS Statistics 
for Windows, version 25 (IBM Corp., Armonk, N.Y., 
USA). A 2 × 7 (sex × brain area) repeated measures 
ANOVA was used to compare NET densities across 
brain areas. The brain areas analyzed were OTu, MSt, 
LSt, Hyp, AMY, mPOA, and pallium. A Greenhouse–
Geisser statistic was used to adjust the degrees of free-
dom (rounded to the nearest whole number) when the 
assumption of sphericity was violated. Bonferroni post 
hoc tests were used (p < 0.05) when appropriate. Addi-
tionally, Student’s t-tests were used to analyze differ-
ences in NET density between male and female quail in 
brain areas of interest.
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Results
Figure  1 depicts the quail brain autoradiograms illus-
trating the density of NET in the targeted brain areas 
from rostral to caudal. In general, the density of NET 
was high in the OTu, MSt, and LSt, moderate in the 
AMY and Hyp, and low in the mPOA and throughout 
the pallium.

The autoradiograms were analyzed with an RM 
ANOVA with sex as the independent factor and brain 
area as the repeated factor. According to the analy-
sis (Fig.  2), there was no overall sex difference in 

[3H]-Nisoxetine binding [F(1, 12) = 4.085, p = 0.066, 
η2 = 0.215], and there was no interaction between sex and 
brain area [F(3, 33) = 1.508, p = 0.79, η2 = 0.173]. How-
ever, there was an overall significant main effect of brain 
area [F(3, 33) = 297.523, p < 0.001, η2 = 0.961]. Bonfer-
roni post hoc tests revealed that the OTu, MSt, and LSt 
had a greater density of [3H]-Nisoxetine binding than 
the AMY, mPOA, Hyp, and pallium (p < 0.05) but were 
not significantly different from one another. Additionally, 
more binding was evident in the Hyp than in the AMY, 
mPOA, and pallium (p < 0.05), and the AMY had more 

Fig. 1  Representative autoradiograms illustrating [3H]Nisoxetine binding of norepinephrine transporters (NET) in male (a–d) and female (e–h) 
quail brains. a–d and e–h panels were sliced on the coronal plane and are presented from rostral to caudal. OTu, olfactory tubercle; MSt, medial 
striatum; LSt, lateral striatum; mPOA, medial preoptic area; AMY amygdala; and Hyp, hypothalamus
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binding than the mPOA and pallium. The pallium had 
less binding than all other areas (p < 0.05).

Similar to Ball et  al. (1995), we analyzed sex differ-
ences in each brain area with Student’s t-tests to better 
identify sex differences that might only be evident within 
a particular brain area. The t-tests revealed a significant 
sex difference in the mPOA [t(12) = 4.451, p = 0.001]. 
The mPOA of females (M = 26.31, SEM = 1.67) had 
more [3H]nisoxetine binding than the mPOA of 
males (M = 12.4666 SEM = 2.62). No other sex differ-
ences were evident: MSt [t(12) = 0.947, p = 0.362]; OTu 
[t(12) = 1.297., p = 0.219.]; LSt [t(12) = 0.446, p = 0.663]; 
AMY [t(12) = 0.855, p = 0.409]; Hyp [t(12) = 1.63, 
p = 0.129]; and pallium [t(12) = 1.293, p = 0.220].

Discussion
The purpose of the current study was to localize and 
determine the relative density of NET in the brain areas 
of male and female quail. In the current study, autora-
diograms revealed NET throughout the quail brain with 
transporters most densely located in the OTu, MSt, and 
LSt, moderately dense in the AMY and Hyp, and least 
dense in the mPOA and throughout the pallium. The 
areas where we found the highest [3H]nisoxetine binding 
are the same areas where a high density of dopaminergic 
neurons and DA receptors have previously been found 
in the quail brain (Ball et  al., 1995; Cornil & Ball, 2008; 
Kleitz et al., 2009). Therefore, the high levels of binding 
in these areas may be evidence for the role of NET in 

clearing DA from the synapse in brain areas associated 
with motivated behaviors.

Although the current study did not directly analyze DA 
and NE differences in the regions analyzed, DA and NE 
innervation have been examined previously in both birds 
and mammals. For example, the MSt and LSt in quail are 
thought to be close analogs to the striatum and nucleus 
accumbens in mammals (Kleitz et al., 2009; Reiner et al., 
2004). Previous research has shown that the striatum is 
more heavily innervated by DA compared to NE in both 
birds (Cornil & Ball, 2008; Smith et al., 2015) and mam-
mals (Del Pino et  al., 2011; Jacobowitz & Richardson, 
1978). In the current study, NET binding was high in the 
striatum of the quail brain. Therefore, it is possible that 
the high density of NET found in the striatum of the quail 
brain may be the main DA transporter in this region.

Striatal dopaminergic innervation is associated with 
motivated and reward related behaviors including addic-
tion related behaviors in birds and mammals. In mice, it 
appears that DAT is required for drug-induced behavio-
ral sensitization (for review see, Uhl et al., 2002). Unlike 
DAT knockout mice that do not develop cocaine-induced 
behavioral sensitization (Mead et  al., 2002), quail do 
acquire a cocaine-induced behavioral sensitization fol-
lowing repeated administration of cocaine (Gill et  al., 
2015). Cocaine acts to block reuptake at all monoam-
inergic (i.e., DA, NE, and serotonin) transporter sites. 
Therefore, the expression of cocaine-induced sensitiza-
tion in quail may be a result of cocaine blocking the activ-
ity of NET (i.e., blocking the reuptake of DA). Although, 
it appears that quail do not have a gene for DAT (Lovell 
et al., 2015), the current study found high levels of NET 
binding in the striatum. It, therefore, may follow that 
these behaviors usually associated with DAT are more 
likely to be associated with NET in birds. Taken together, 
the claim by Lovell et al. (2015) that NET may be respon-
sible for clearing DA from the synapse in aves, appears to 
be supported by the current results.

The current study found evidence for moderate [3H]
nisoxetine binding in the AMY and the Hyp. One pos-
sible explanation for this finding is that NET may be 
acting as both an adrenoceptive and dopaminoceptive 
transporter in these regions. In rodents, even though 
both DA and NE are found in the AMY, NE is found at 
consistent low levels throughout the AMY whereas DA 
is primarily localized to anterior and basolateral AMY 
at a much greater concentration compared to NE (Ben-
Ari et  al., 1975; Kilts & Anderson, 1986). Despite local-
ized DA innervation in the AMY, there are relatively few 
DA receptors in the AMY (Charuchinda et al., 1987). Our 
results are consistent with previous research that sug-
gests cross-talk between dopaminergic and adrenergic 
systems. Specifically, Yamamoto et  al. (2007) found that 
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Fig. 2  [3H]Nisoxetine binding in various brain regions of male and 
female Japanese quail. Each bar and brackets represent the mean 
of the region ± SEM. a indicates a significant difference from the 
Pallium, p < .05. b indicates a significant difference from mPOA, p < .05. 
c indicates a significant difference from Hyp, p < .05. d indicates 
a significant difference from AMY, p < .05. * indicates a significant 
sex difference in the mPOA as indicated by *, p < .05. OTu, olfactory 
tubercle; MSt, medial striatum; LSt, lateral striatum; mPOA, medial 
preoptic area; AMY amygdala; and Hyp, hypothalamus
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DA directly acts on adrenergic receptors in the lateral 
AMY. Similar to the AMY of rodents, the AMY of birds 
is innervated by both dopaminergic and adrenergic neu-
rons. Specifically, birds have a greater ratio of DA to NE 
in the AMY (Divac et  al., 1985), but they also have few 
DA receptors (Ball et al., 1995) and high concentrations 
of NE receptors (Balthazart et al., 1989). However, there 
is no direct evidence for cross-talk in the AMY of birds. 
Similar [3H]nisoxetine binding in AMY, the current 
study found a moderate level of [3H]nisoxetine binding 
in the Hyp of quail. Previous research indicates that DA 
is readily found throughout the Hyp, whereas NE tends 
to be more localized to the ventromedial nucleus and the 
mPOA (Palkovits et al., 1974). Similar to the AMY, even 
though DA is found throughout the hypothalamus, there 
are relatively few DA receptors found in this area. Addi-
tionally, like in the AMY of rodents, DA binds to noradr-
energic receptors in the mPOA (Cornil et al., 2002) and 
modulates sexual behavior in quail (Cornil et  al., 2005). 
Therefore, it appears that NET densities in the AMY and 
Hyp may be related to levels of both dopaminergic and/or 
noradrenergic innervation, specifically areas with greater 
DA and NE innervation have higher NET densities.

Surprisingly, the current study found that female quail 
had a greater density of NET in the mPOA than males. 
Previous research in rodents indicates that the preop-
tic area (POA) is larger and more densely packed with 
cells in females compared to males (Bleier et  al., 1982). 
However, even with a larger POA, sex differences in rats 
have not been found in DA (Carlsson & Carlsson, 1998) 
nor in NE content (Reznikov & Nosenko, 1995). Similar 
to rodents, sex differences in DA levels in the POA have 
not been found in quail (Ottinger et al., 1986; Balthazart 
et al,. 1992) nor in DA receptor density in the POA (Ball 
et  al., 1995). However, previous research has consist-
ently found that female quail have more NE in the POA 
than males (Balthazart et al., 1992; Ottinger et al., 1986). 
Furthermore, the area of noradrenergic innervation in 
the POA is larger in females than in males (Bailhache & 
Balthazart, 1993). Taken together, previous research sug-
gests that perhaps the sex difference observed in the cur-
rent study may be more likely due to higher NE levels in 
the mPOA in female quail compared to male quail rather 
than as it relates to DA innervation in the mPOA.

Conclusions
In summary, the current study is, to date, the first to 
localize and determine the density of NET in quail. The 
main limitation of the current study is that we did not 
co-localize NET with dopaminergic markers. When 
examined against previous literature, we found a higher 
density of NET in areas known to have high dopaminer-
gic activity, and lower densities in areas known to have 

less DA and NE innervation. The findings provide further 
support for previous research (Lovell et  al., 2015) that 
suggests that NET expression may compensate for a loss 
of DAT in birds and other sauropsids.
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