5 research outputs found

    Effects of Size Reduction on the Electrical Transport Properties of 3D Bi Nanowire Networks

    Get PDF
    3D nanowire networks are fascinating systems for future microelectronic devices. They can be handled like macroscopic objects, while exhibiting properties of nanoscale materials. Here, the fabrication of free‐standing 3D bismuth nanowire networks with well‐controlled and systematically adjusted wire diameter and interconnectivity is presented. The samples are fabricated by pulse electroplating of bismuth into the pores of ion track‐etched membranes using an aqueous electrolyte. By optimizing the growth parameters, homogeneously grown, mechanically self‐supporting and free‐standing networks without a supporting matrix are achieved. Cross‐plane Seebeck coefficient and electrical resistance values are investigated as a function of nanowire diameter and temperature. The unique characteristics of these highly interconnected and mechanically self‐supported Bi 3D nanowire networks offer exciting perspectives for their implementation in, e.g., infrared detection based on thermoelectric effects, sensing, and THz applications

    Experimental evidence of a size-dependent sign change of the Seebeck coefficient of Bi nanowire arrays

    No full text
    Abstract The electrical transport in bismuth nanowires is strongly influenced by both sample geometry and crystallinity. Compared to bulk bismuth, the electrical transport in nanowires is dominated by size effects and influenced by surface states, which gain increasing relevance with increasing surface-to-volume ratios, i.e. with decreasing wire diameter. Bismuth nanowires with tailored diameter and crystallinity constitute, therefore, excellent model systems, allowing to study the interplay of the different transport phenomena. Here, we present temperature-dependent Seebeck coefficient and relative electrical resistance measurements of parallel bismuth nanowire arrays with diameters between 40 and 400 nm synthesized by pulsed electroplating in polymer templates. Both electrical resistance and Seebeck coefficient exhibit a non-monotonic temperature dependence, with the sign of the Seebeck coefficient changing from negative to positive with decreasing temperature. The observed behavior is size-dependent and is attributed to limitations of the mean free path of the charge carriers within the nanowires. The observed size-dependent Seebeck coefficient and in particular the size-dependent sign change opens a promising avenue for single-material thermocouples with p- and n-legs made from nanowires with different diameters
    corecore