25 research outputs found

    Endogenous control genes in complex vascular tissue samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression microarrays and real-time PCR are common methods used to measure mRNA levels. Each method has a fundamentally different approach of normalization between samples. Relative quantification of gene expression using real-time PCR is often done using the 2^(-ΔΔCt) method, in which the normalization is performed using one or more endogenous control genes. The choice of endogenous control gene is often arbitrary or bound by tradition. We here present an analysis of the differences in expression results obtained with microarray and real-time PCR, dependent on different choices of endogenous control genes.</p> <p>Results</p> <p>In complex tissue, microarray data and real-time PCR data show the best correlation when endogenous control genes are omitted and the normalization is done relative to total RNA mass, as measured before reverse transcription.</p> <p>Conclusion</p> <p>We have found that for real-time PCR in heterogeneous tissue samples, it may be a better choice to normalize real-time PCR Ct values to the carefully measured mass of total RNA than to use endogenous control genes. We base this conclusion on the fact that total RNA mass normalization of real-time PCR data shows better correlation to microarray data. Because microarray data use a different normalization approach based on a larger part of the transcriptome, we conclude that omitting endogenous control genes will give measurements more in accordance with actual concentrations.</p

    CD1d-dependent Activation of NKT Cells Aggravates Atherosclerosis

    Get PDF
    Adaptive and innate immunity have been implicated in the pathogenesis of atherosclerosis. Given their abundance in the lesion, lipids might be targets of the atherosclerosis-associated immune response. Natural killer T (NKT) cells can recognize lipid antigens presented by CD1 molecules. We have explored the role of CD1d-restricted NKT cells in atherosclerosis by using apolipoprotein E–deficient (apoE−/−) mice, a hypercholesterolemic mouse model that develops atherosclerosis. ApoE−/− mice crossed with CD1d−/− (CD1d−/−apoE−/−) mice exhibited a 25% decrease in lesion size compared with apoE−/− mice. Administration of α-galactosylceramide, a synthetic glycolipid that activates NKT cells via CD1d, induced a 50% increase in lesion size in apoE−/− mice, whereas it did not affect lesion size in apoE−/−CD1d−/− mice. Treatment was accompanied by an early burst of cytokines (IFNγ, MCP-1, TNFα, IL-2, IL-4, IL-5, and IL-6) followed by sustained increases in IFNγ and IL-4 transcripts in the spleen and aorta. Early activation of both T and B cells was followed by recruitment of T and NKT cells to the aorta and activation of inflammatory genes. These results show that activation of CD1d-restricted NKT cells exacerbates atherosclerosis

    Low TLR7 gene expression in atherosclerotic plaques is associated with major adverse cardio- and cerebrovascular events

    Get PDF
    AIMS: Processes in the development of atherosclerotic lesions can lead to plaque rupture or erosion, which can in turn elicit myocardial infarction or ischaemic stroke. The aims of this study were to determine whether Toll-like receptor 7 (TLR7) gene expression levels influence patient outcome and to explore the mechanisms linked to TLR7 expression in atherosclerosis. METHODS AND RESULTS: Atherosclerotic plaques were removed by carotid endarterectomy (CEA) and subjected to gene array expression analysis (n = 123). Increased levels of TLR7 transcript in the plaques were associated with better outcome in a follow-up study over a maximum of 8 years. Patients with higher TLR7 transcript levels had a lower risk of experiencing major cardiovascular and cerebrovascular events (MACCE) during the follow-up period after CEA (hazard ratio: 2.38, P = 0.012, 95% CI 1.21–4.67). TLR7 was expressed in all plaques by T cells, macrophages and endothelial cells in capillaries, as shown by immunohistochemistry. In short-term tissue cultures, ex vivo treatment of plaques with the TLR7 ligand imiquimod elicited dose-dependent secretion of IL-10, TNF-α, GM-CSF, and IL-12/IL-23p40. This secretion was blocked with a TLR7 inhibitor. Immunofluorescent tissue analysis after TLR7 stimulation showed IL-10 expression in T cells, macrophages and vascular smooth muscle cells. TLR7 mRNA levels in the plaques were correlated with IL-10 receptor (r = 0.4031, P < 0.0001) and GM-CSF receptor A (r = 0.4354, P < 0.0001) transcripts. CONCLUSION: These findings demonstrate that TLR7 is abundantly expressed in human atherosclerotic plaques. TLR7 ligation elicits the secretion of pro-inflammatory and anti-inflammatory cytokines, and high TLR7 expression in plaques is associated with better patient outcome, suggesting that TLR7 is a potential therapeutic target for prevention of complications of atherosclerosis

    Relationship between CAD Risk Genotype in the Chromosome 9p21 Locus and Gene Expression. Identification of Eight New ANRIL Splice Variants

    Get PDF
    BACKGROUND: Several genome-wide association studies have recently linked a group of single nucleotide polymorphisms in the 9p21 region with cardiovascular disease. The molecular mechanisms of this link are not fully understood. We investigated five different expression microarray datasets in order to determine if the genotype had effect on expression of any gene transcript in aorta, mammary artery, carotid plaque and lymphoblastoid cells. METHODOLOGY/PRINCIPAL FINDINGS: After multiple testing correction, no genes were found to have relation to the rs2891168 risk genotype, either on a genome-wide scale or on a regional (8 MB) scale. The neighbouring ANRIL gene was found to have eight novel transcript variants not previously known from literature and these varied by tissue type. We therefore performed a detailed probe-level analysis and found small stretches of significant relation to genotype but no consistent associations. In all investigated tissues we found an inverse correlation between ANRIL and the MTAP gene and a positive correlation between ANRIL and CDKN2A and CDKN2B. CONCLUSIONS/SIGNIFICANCE: Investigation of relation of the risk genotype to gene expression is complicated by the transcript complexity of the locus. With our investigation of a range of relevant tissue we wish to underscore the need for careful attention to the complexity of the alternative splicing issues in the region and its implications to the design of future gene expression studies

    Genetic susceptibility loci for cardiovascular disease and their impact on atherosclerotic plaques

    Get PDF
    Background: Atherosclerosis is a chronic inflammatory disease in part caused by lipid uptake in the vascular wall, but the exact underlying mechanisms leading to acute myocardial infarction and stroke remain poorly understood. Large consortia identified genetic susceptibility loci that associate with large artery ischemic stroke and coronary artery disease. However, deciphering their underlying mechanisms are challenging. Histological studies identified destabilizing characteristics in human atherosclerotic plaques that associate with clinical outcome. To what extent established susceptibility loci for large artery ischemic stroke and coronary artery disease relate to plaque characteristics is thus far unknown but may point to novel mechanisms. Methods: We studied the associations of 61 established cardiovascular risk loci with 7 histological plaque characteristics assessed in 1443 carotid plaque specimens from the Athero-Express Biobank Study. We also assessed if the genotyped cardiovascular risk loci impact the tissue-specific gene expression in 2 independent biobanks, Biobank of Karolinska Endarterectomy and Stockholm Atherosclerosis Gene Expression. Results: A total of 21 established risk variants (out of 61) nominally associated to a plaque characteristic. One variant (rs12539895, risk allele A) at 7q22 associated to a reduction of intraplaque fat, P=5.09×10−6 after correction for multiple testing. We further characterized this 7q22 Locus and show tissue-specific effects of rs12539895 on HBP1 expression in plaques and COG5 expression in whole blood and provide data from public resources showing an association with decreased LDL (low-density lipoprotein) and increase HDL (high-density lipoprotein) in the blood. Conclusions: Our study supports the view that cardiovascular susceptibility loci may exert their effect by influencing the atherosclerotic plaque characteristics

    Common genetic determinants of lung function, subclinical atherosclerosis and risk of coronary artery disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) independently associates with an increased risk of coronary artery disease (CAD), but it has not been fully investigated whether this co-morbidity involves shared pathophysiological mechanisms. To identify potential common pathways across the two diseases, we tested all recently published single nucleotide polymorphisms (SNPs) associated with human lung function (spirometry) for association with carotid intima-media thickness (cIMT) in 3,378 subjects with multiple CAD risk factors, and for association with CAD in a case-control study of 5,775 CAD cases and 7,265 controls. SNPs rs2865531, located in the CFDP1 gene, and rs9978142, located in the KCNE2 gene, were significantly associated with CAD. In addition, SNP rs9978142 and SNP rs3995090 located in the HTR4 gene, were associated with average and maximal cIMT measures. Genetic risk scores combining the most robustly spirometry-associated SNPs from the literature were modestly associated with CAD, (odds ratio (OR) (95% confidence interval (CI95) = 1.06 (1.03, 1.09); P-value = 1.5×10-4, per allele). In conclusion, our study suggests that some genetic loci implicated in determining human lung function also influence cIMT and susceptibility to CAD. The present results should help elucidate the molecular underpinnings of the co-morbidity observed across COPD and CAD

    Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis

    Get PDF
    Immune responses to oxidized low-density lipoprotein (oxLDL) are proposed to be important in atherosclerosis. To identify the mechanisms of recognition that govern T cell responses to LDL particles, we generated T cell hybridomas from human ApoB100 transgenic (huB100tg) mice that were immunized with human oxLDL. Surprisingly, none of the hybridomas responded to oxidized LDL, only to native LDL and the purified LDL apolipoprotein ApoB100. However, sera from immunized mice contained IgG antibodies to oxLDL, suggesting that T cell responses to native ApoB100 help B cells making antibodies to oxLDL. ApoB100 responding CD4+ T cell hybridomas were MHC class II–restricted and expressed a single T cell receptor (TCR) variable (V) β chain, TRBV31, with different Vα chains. Immunization of huB100tgxLdlr−/− mice with a TRBV31-derived peptide induced anti-TRBV31 antibodies that blocked T cell recognition of ApoB100. This treatment significantly reduced atherosclerosis by 65%, with a concomitant reduction of macrophage infiltration and MHC class II expression in lesions. In conclusion, CD4+ T cells recognize epitopes on native ApoB100 protein, this response is associated with a limited set of clonotypic TCRs, and blocking TCR-dependent antigen recognition by these T cells protects against atherosclerosis

    Lack of Invariant Natural Killer T Cells Affects Lipid Metabolism in Adipose Tissue of Diet-Induced Obese Mice

    No full text
    Objective-Obesity promotes a chronic inflammatory condition in adipose tissue (AT). Impairment of insulin sensitivity coincides with infiltration of T cells into AT in early stages of obesity, when macrophages are not yet present. Here, we examine the role of invariant natural killer T (iNKT) cells, a subtype of T cells activated by lipid antigens, on glucose and lipid metabolism in obesity. Approach and Results-J alpha 18(-/-) mice, specifically lacking iNKT cells, and wild-type mice consumed a chow or high-fat diet for 10 weeks. One third of all T lymphocytes in the liver of wild-type mice were iNKT cells, whereas few were detected in AT. Diet-induced obesity increased blood glucose in both genotypes of mice, whereas glucose tolerance test revealed similar kinetics of glucose clearance in J alpha 18(-/-) and wild-type mice. Under obese conditions, expression of inflammatory cytokines in AT did not differ between the groups, although the number of T cells and macrophages was lower in J alpha 18(-/-) mice. Nonetheless, AT homeostasis in J alpha 18(-/-) mice was altered evidenced by lower AT weight, smaller adipocytes, accelerated lipogenesis, increased expression of hormone-sensitive lipase, and accelerated basal lipolysis. Conclusions-iNKT cells do not affect glucose clearance but rather modulate lipid metabolism in both liver and AT. Only few iNKT cells are found in AT under lean and obese conditions, suggesting that their effects on lipid metabolism are mainly mediated in the liver, their primary host orga
    corecore