2,474 research outputs found

    Optimal discrimination of quantum operations

    Full text link
    We address the problem of discriminating with minimal error probability two given quantum operations. We show that the use of entangled input states generally improves the discrimination. For Pauli channels we provide a complete comparison of the optimal strategies where either entangled or unentangled input states are used.Comment: 4 pages, no figure

    Quantum state estimation and large deviations

    Full text link
    In this paper we propose a method to estimate the density matrix \rho of a d-level quantum system by measurements on the N-fold system. The scheme is based on covariant observables and representation theory of unitary groups and it extends previous results concerning the estimation of the spectrum of \rho. We show that it is consistent (i.e. the original input state \rho is recovered with certainty if N \to \infty), analyze its large deviation behavior, and calculate explicitly the corresponding rate function which describes the exponential decrease of error probabilities in the limit N \to \infty. Finally we discuss the question whether the proposed scheme provides the fastest possible decay of error probabilities.Comment: LaTex2e, 40 pages, 2 figures. Substantial changes in Section 4: one new subsection (4.1) and another (4.2 was 4.1 in the previous version) completely rewritten. Minor changes in Sect. 2 and 3. Typos corrected. References added. Accepted for publication in Rev. Math. Phy

    Academic freedom in Europe: reviewing UNESCO’s recommendation

    Get PDF
    This paper examines the compliance of universities in the European Union with the UNESCO Recommendation concerning the Status of Higher–Education Teaching Personnel, which deals primarily with protection for academic freedom. The paper briefly surveys the European genesis of the modern research university and academic freedom, before evaluating compliance with the UNESCO recommendation on institutional autonomy, academic freedom, university governance and tenure. Following from this, the paper examines the reasons for the generally low level of compliance with the UNESCO Recommendation within the EU states, and considers how such compliance could be improved

    Pressure Evolution of the Magnetic Field induced Ferromagnetic Fluctuation through the Pseudo-Metamagnetism of CeRu2Si2

    Full text link
    Resistivity measurements performed under pressure in the paramagnetic ground state of CeRu2Si2 are reported. They demonstrate that the relative change of effective mass through the pseudo metamagnetic transition is invariant under pressure. The results are compared with the first order metamagnetic transition due to the antiferromagnetism of Ce0.9La0.1Ru2Si2 which corresponds to the "negative" pressure of CeRu2Si2 by volume expansion. Finally, we describe the link between the spin-depairing of quasiparticles on CeRu2Si2 and that of Cooper pairs on the unconventional heavy fermion superconductor CeCoIn5.Comment: 5 pages, 6 figures, accepted for publication in J. Phys. Soc. Jp

    Quantum Channels with Memory

    Full text link
    We present a general model for quantum channels with memory, and show that it is sufficiently general to encompass all causal automata: any quantum process in which outputs up to some time t do not depend on inputs at times t' > t can be decomposed into a concatenated memory channel. We then examine and present different physical setups in which channels with memory may be operated for the transfer of (private) classical and quantum information. These include setups in which either the receiver or a malicious third party have control of the initializing memory. We introduce classical and quantum channel capacities for these settings, and give several examples to show that they may or may not coincide. Entropic upper bounds on the various channel capacities are given. For forgetful quantum channels, in which the effect of the initializing memory dies out as time increases, coding theorems are presented to show that these bounds may be saturated. Forgetful quantum channels are shown to be open and dense in the set of quantum memory channels.Comment: 21 pages with 5 EPS figures. V2: Presentation clarified, references adde

    Type I interferons and MAVS signaling are necessary for tissue resident memory CD8+ T cell responses to RSV infection

    Get PDF
    Respiratory syncytial virus (RSV) can cause bronchiolitis and viral pneumonia in young children and the elderly. Lack of vaccines and recurrence of RSV infection indicate the difficulty in eliciting protective memory immune responses. Tissue resident memory T cells (TRM) can confer protection from pathogen re-infection and, in human experimental RSV infection, the presence of lung CD8+ TRM cells correlates with a better outcome. However, the requirements for generating and maintaining lung TRM cells during RSV infection are not fully understood. Here, we use mouse models to assess the impact of innate immune response determinants in the generation and subsequent expansion of the TRM cell pool during RSV infection. We show that CD8+ TRM cells expand independently from systemic CD8+ T cells after RSV re-infection. Re-infected MAVS and MyD88/TRIF deficient mice, lacking key components involved in innate immune recognition of RSV and induction of type I interferons (IFN-α/ÎČ), display impaired expansion of CD8+ TRM cells and reduction in antigen specific production of granzyme B and IFN-Îł. IFN-α treatment of MAVS deficient mice during primary RSV infection restored TRM cell expansion upon re-challenge but failed to recover TRM cell functionality. Our data reveal how innate immunity, including the axis controlling type I IFN induction, instructs and regulates CD8+ TRM cell responses to RSV infection, suggesting possible mechanisms for therapeutic intervention

    All Teleportation and Dense Coding Schemes

    Get PDF
    We establish a one-to-one correspondence between (1) quantum teleportation schemes, (2) dense coding schemes, (3) orthonormal bases of maximally entangled vectors, (4) orthonormal bases of unitary operators with respect to the Hilbert-Schmidt scalar product, and (5) depolarizing operations, whose Kraus operators can be chosen to be unitary. The teleportation and dense coding schemes are assumed to be ``tight'' in the sense that all Hilbert spaces involved have the same finite dimension d, and the classical channel involved distinguishes d^2 signals. A general construction procedure for orthonormal bases of unitaries, involving Latin Squares and complex Hadamard Matrices is also presented.Comment: 21 pages, LaTe

    Quantum Magnetic Deflagration in Mn12 Acetate

    Get PDF
    We report controlled ignition of magnetization reversal avalanches by surface acoustic waves in a single crystal of Mn12 acetate. Our data show that the speed of the avalanche exhibits maxima on the magnetic field at the tunneling resonances of Mn12. Combined with the evidence of magnetic deflagration in Mn12 acetate (Suzuki et al., cond-mat/0506569) this suggests a novel physical phenomenon: deflagration assisted by quantum tunneling.Comment: 4 figure

    Decoupling with unitary approximate two-designs

    Full text link
    Consider a bipartite system, of which one subsystem, A, undergoes a physical evolution separated from the other subsystem, R. One may ask under which conditions this evolution destroys all initial correlations between the subsystems A and R, i.e. decouples the subsystems. A quantitative answer to this question is provided by decoupling theorems, which have been developed recently in the area of quantum information theory. This paper builds on preceding work, which shows that decoupling is achieved if the evolution on A consists of a typical unitary, chosen with respect to the Haar measure, followed by a process that adds sufficient decoherence. Here, we prove a generalized decoupling theorem for the case where the unitary is chosen from an approximate two-design. A main implication of this result is that decoupling is physical, in the sense that it occurs already for short sequences of random two-body interactions, which can be modeled as efficient circuits. Our decoupling result is independent of the dimension of the R system, which shows that approximate 2-designs are appropriate for decoupling even if the dimension of this system is large.Comment: Published versio
    • 

    corecore