63 research outputs found

    Voluntary Intake of Tanzania Grass (\u3ci\u3ePanicum maximum\u3c/i\u3e) under Rotational Grazing by Lactating Cows

    Get PDF
    The study was conducted at Nucleo de Pesquisas Zootecnicas Nordeste of the Instituto de Zootecnia, Ribeirão Preto, SP, in a rotational grazing area of Tanzania grass (Panicum maximum), to estimate the dry matter intake by lactanting cows. The estimation of dry matter intake was calculated from the feces production estimated using extrusa Chromium-mordent and the in vitro digestibility of diet. The three treatments were crossbreed cows fed 3 kg.day-1 of concentrate, crossbred cows without concentrate suplementation and pure Gir cows also without concentrate supplementation. The milk production was 11.98, 6.53 and 5.46 kg per cow per day, the grass intake was 8.26 ± 5.66, 11.01 ± 5.37 and 9.55 ± 2.31 kg of dry matter per day or 2.15%, 2.37% and 2.34% of live weight for the three experimental groups respectively. The milk production was higher (P\u3c 0.01) for cows fed with concentrate. No difference was found for dry matter intake

    Liver transcriptomic networks reveal main biological processes associated with feed efficiency in beef cattle

    Get PDF
    Abstract\ud \ud Background\ud The selection of beef cattle for feed efficiency (FE) traits is very important not only for productive and economic efficiency but also for reduced environmental impact of livestock. Considering that FE is multifactorial and expensive to measure, the aim of this study was to identify biological functions and regulatory genes associated with this phenotype.\ud \ud \ud Results\ud Eight genes were differentially expressed between high and low feed efficient animals (HFE and LFE, respectively). Co-expression analyses identified 34 gene modules of which 4 were strongly associated with FE traits. They were mainly enriched for inflammatory response or inflammation-related terms. We also identified 463 differentially co-expressed genes which were functionally enriched for immune response and lipid metabolism. A total of 8 key regulators of gene expression profiles affecting FE were found. The LFE animals had higher feed intake and increased subcutaneous and visceral fat deposition. In addition, LFE animals showed higher levels of serum cholesterol and liver injury biomarker GGT. Histopathology of the liver showed higher percentage of periportal inflammation with mononuclear infiltrate.\ud \ud \ud Conclusion\ud Liver transcriptomic network analysis coupled with other results demonstrated that LFE animals present altered lipid metabolism and increased hepatic periportal lesions associated with an inflammatory response composed mainly by mononuclear cells. We are now focusing to identify the causes of increased liver lesions in LFE animals.The authors thank Fundação de Apoio a Pesquisa do Estado de São Paulo\ud (FAPESP) for financial support (process. numbers: 2014/02493-7; 2014/07566-\ud 2) and scholarship for PA Alexandre (2012/14792-3; 2014/00307-1). HN\ud Kadarmideen thanks EU-FP7 Marie Curie Actions – Career Integration Grant\ud (CIG-293511) for partially funding his time spent on this research. The authors\ud thank Dr. JF Medrano for the technical advice on RNAseq and experimental\ud design

    Integrative analysis to select cancer candidate biomarkers to targeted validation

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOTargeted proteomics has flourished as the method of choice for prospecting for and validating potential candidate biomarkers in many diseases. However, challenges still remain due to the lack of standardized routines that can prioritize a limited number of proteins to be further validated in human samples. To help researchers identify candidate biomarkers that best characterize their samples under study, a well-designed integrative analysis pipeline, comprising MS-based discovery, feature selection methods, clustering techniques, bioinformatic analyses and targeted approaches was performed using discovery-based proteomic data from the secretomes of three classes of human cell lines (carcinoma, melanoma and non-cancerous). Three feature selection algorithms, namely, Beta-binomial, Nearest Shrunken Centroids (NSC), and Support Vector Machine-Recursive Features Elimination (SVM-RFE), indicated a panel of 137 candidate biomarkers for carcinoma and 271 for melanoma, which were differentially abundant between the tumor classes. We further tested the strength of the pipeline in selecting candidate biomarkers by immunoblotting, human tissue microarrays, label-free targeted MS and functional experiments. In conclusion, the proposed integrative analysis was able to pre-qualify and prioritize candidate biomarkers from discovery-based proteomics to targeted MS.Targeted proteomics has flourished as the method of choice for prospecting for and validating potential candidate biomarkers in many diseases. However, challenges still remain due to the lack of standardized routines that can prioritize a limited number of proteins to be further validated in human samples. To help researchers identify candidate biomarkers that best characterize their samples under study, a well-designed integrative analysis pipeline, comprising MS-based discovery, feature selection methods, clustering techniques, bioinformatic analyses and targeted approaches was performed using discovery-based proteomic data from the secretomes of three classes of human cell lines (carcinoma, melanoma and non-cancerous). Three feature selection algorithms, namely, Beta-binomial, Nearest Shrunken Centroids (NSC), and Support Vector Machine-Recursive Features Elimination (SVM-RFE), indicated a panel of 137 candidate biomarkers for carcinoma and 271 for melanoma, which were differentially abundant between the tumor classes. We further tested the strength of the pipeline in selecting candidate biomarkers by immunoblotting, human tissue microarrays, label-free targeted MS and functional experiments. In conclusion, the proposed integrative analysis was able to pre-qualify and prioritize candidate biomarkers from discovery-based proteomics to targeted MS6414363543652FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2009/54067-3; 2010/19278-0; 2011/22421-2; 2009/53839-2470567/2009-0; 470549/2011-4; 301702/2011-0; 470268/2013-
    • 

    corecore