61 research outputs found

    The role of the anaphase-promoting complex/cyclosome in plant growth

    Get PDF
    The anaphase-promoting complex/cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase that plays a major role in the progression of the eukaryotic cell cycle. This unusual protein complex targets key cell cycle regulators, such as mitotic cyclins and securins, for degradation via the 26S proteasome by ubiquitination, triggering the metaphase-to-anaphase transition and exit from mitosis. Because of its essential role in cell cycle regulation, the APC/C has been extensively studied in mammals and yeasts, but relatively less in plants. Evidence shows that, besides its well-known role in cell cycle regulation, the APC/C also has functions beyond the cell cycle. In metazoans, the APC/C has been implicated in cell differentiation, disease control, basic metabolism and neuronal survival. Recent studies also have shed light on specific functions of the APC/C during plant development. Plant APC/C subunits and activators have been reported to play a role in cellular differentiation, vascular development, shoot branching, female and male gametophyte development and embryogenesis. Here, we discuss our current understanding of the APC/C controlling plant growth

    AIP1 is a novel Agenet/Tudor domain protein from Arabidopsis that interacts with regulators of DNA replication, transcription and chromatin remodeling

    Get PDF
    Background: DNA replication and transcription are dynamic processes regulating plant development that are dependent on the chromatin accessibility. Proteins belonging to the Agenet/Tudor domain family are known as histone modification "readers" and classified as chromatin remodeling proteins. Histone modifications and chromatin remodeling have profound effects on gene expression as well as on DNA replication, but how these processes are integrated has not been completely elucidated. It is clear that members of the Agenet/Tudor family are important regulators of development playing roles not well known in plants. Methods: Bioinformatics and phylogenetic analyses of the Agenet/Tudor Family domain in the plant kingdom were carried out with sequences from available complete genomes databases. 3D structure predictions of Agenet/Tudor domains were calculated by I-TASSER server. Protein interactions were tested in two-hybrid, GST pulldown, semi-in vivo pulldown and Tandem Affinity Purification assays. Gene function was studied in a T-DNA insertion GABI-line. Results: In the present work we analyzed the family of Agenet/Tudor domain proteins in the plant kingdom and we mapped the organization of this family throughout plant evolution. Furthermore, we characterized a member from Arabidopsis thaliana named AIP1 that harbors Agenet/Tudor and DUF724 domains. AIP1 interacts with ABAP1, a plant regulator of DNA replication licensing and gene transcription, with a plant histone modification "reader" (LHP1) and with non modified histones. AIP1 is expressed in reproductive tissues and its down-regulation delays flower development timing. Also, expression of ABAP1 and LHP1 target genes were repressed in flower buds of plants with reduced levels of AIP1. Conclusions: AIP1 is a novel Agenet/Tudor domain protein in plants that could act as a link between DNA replication, transcription and chromatin remodeling during flower development

    Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways

    Get PDF
    Sugarcane interacts with particular types of beneficial nitrogen-fixing bacteria that provide fixed-nitrogen and plant growth hormones to host plants, promoting an increase in plant biomass. Other benefits, as enhanced tolerance to abiotic stresses have been reported to some diazotrophs. Here we aim to study the effects of the association between the diazotroph Gluconacetobacter diazotrophicus PAL5 and sugarcane cv. SP70-1143 during water depletion by characterizing differential transcriptome profiles of sugarcane. RNA-seq libraries were generated from roots and shoots of sugarcane plants free of endophytes that were inoculated with G. diazotrophicus and subjected to water depletion for 3 days. A sugarcane reference transcriptome was constructed and used for the identification of differentially expressed transcripts. The differential profile of non-inoculated SP70-1143 suggests that it responds to water deficit stress by the activation of drought-responsive markers and hormone pathways, as ABA and Ethylene. qRT-PCR revealed that root samples had higher levels of G. diazotrophicus 3 days after water deficit, compared to roots of inoculated plants watered normally. With prolonged drought only inoculated plants survived, indicating that SP70-1143 plants colonized with G. diazotrophicus become more tolerant to drought stress than non-inoculated plants. Strengthening this hypothesis, several gene expression responses to drought were inactivated or regulated in an opposite manner, especially in roots, when plants were colonized by the bacteria. The data suggests that colonized roots would not be suffering from stress in the same way as non-inoculated plants. On the other hand, shoots specifically activate ABA-dependent signaling genes, which could act as key elements in the drought resistance conferred by G. diazotrophicus to SP70-1143. This work reports for the first time the involvement of G. diazotrophicus in the promotion of drought-tolerance to sugarcane cv. SP70-1143, and it describes the initial molecular events that may trigger the increased drought tolerance in the host plant

    Genomic evolution and complexity of the Anaphase-promoting Complex (APC) in land plants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The orderly progression through mitosis is regulated by the Anaphase-Promoting Complex (APC), a large multiprotein E<sub>3 </sub>ubiquitin ligase that targets key cell-cycle regulators for destruction by the 26 S proteasome. The APC is composed of at least 11 subunits and associates with additional regulatory activators during mitosis and interphase cycles. Despite extensive research on APC and activator functions in the cell cycle, only a few components have been functionally characterized in plants.</p> <p>Results</p> <p>Here, we describe an in-depth search for APC subunits and activator genes in the Arabidopsis, rice and poplar genomes. Also, searches in other genomes that are not completely sequenced were performed. Phylogenetic analyses indicate that some APC subunits and activator genes have experienced gene duplication events in plants, in contrast to animals. Expression patterns of paralog subunits and activators in rice could indicate that this duplication, rather than complete redundancy, could reflect initial specialization steps. The absence of subunit APC7 from the genome of some green algae species and as well as from early metazoan lineages, could mean that APC7 is not required for APC function in unicellular organisms and it may be a result of duplication of another tetratricopeptide (TPR) subunit. Analyses of TPR evolution suggest that duplications of subunits started from the central domains.</p> <p>Conclusions</p> <p>The increased complexity of the APC gene structure, tied to the diversification of expression paths, suggests that land plants developed sophisticated mechanisms of APC regulation to cope with the sedentary life style and its associated environmental exposures.</p
    corecore