6 research outputs found
Mixed-valence state of symmetric diruthenium complexes: synthesis, characterization, and electron transfer investigation
Complexes of the type {[(pyS)Ru(NH3)(4)](2)-mu-L}(n), where pyS = 4-mercaptopyridine, L = 4,4'-dithiodipyridine (pySSpy), pyrazine (pz) and 1,4-dicyanobenzene (DCB), and n = +4 and +5 for fully reduced and mixed-valence complexes, respectively, were synthesized and characterized. Electrochemical data showed that there is electron communication between the metal centers with comproportionation constants of 33.2, 1.30 x 10(8) and 5.56 x 10(5) for L = pySSpy, pz and DCB, respectively. It was also observed that the electronic coupling between the metal centers is affected by the p-back-bonding interaction toward the pyS ligand. Raman spectroscopy showed a dependence of the intensity of the vibrational modes on the exciting radiations giving support to the assignments of the electronic transitions. The degree of electron communication between the metal centers through the bridging ligands suggests that these systems can be molecular wire materials.CNPqCNPqFAPESPFAPESPFUNCAP [PRONEM PRN-0040-00065.01.00/10, 10582696-0]FUNCAPCAPESCAPE
Thionicotinamide SAM on Gold: Adsorption Studies and Electroactivity
STM and impedance results of the self-assembled monolayer (SAM) formed with thionicotinamide (TNA) on gold indicate the presence of defects that increase with the immersion time of the electrode in the TNA solution affecting the SAM electroactivity toward the electron transfer reaction of the cytochrome e metalloprotein and [Fe(CN)(6)](4-) and [Ru(NH(3))(6)](3+) complexes. It was observed that this electroactivity was also affected by the pH of the electrolyte solution. SERS and STM data indicate sulfur coordination to the surface with contribution of the NH(2) group. From the dependence of the TNA surface coverage on the temperature and concentration in solution, thermodynamic parameters of adsorption were determined.Funcap/CNPqFuncap/CNPqConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq[303538/2005-8]CAPESCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)FINEPFinanciadora de Estudos e Projetos (FINEP
Effect of crotalus basiliscus snake venom on the redox reaction of myoglobin
In this work, we have studied the effect of Crotalus basiliscus snake venom on the redox reaction of myoglobin (Mb), and by means of electrochemical techniques, we have shown that this reaction is undoubtedly affected following the interaction with the venom. Surface plasmon resonance, electrophoresis, UV-Vis, and circular dichroism showed that the interaction involves the attachment of some constituent of the venom to the protein, although not affecting its first and secondary structures. Mass spectra support this suggestion by showing the appearance of signals assigned to the Mb dimer and to a new species resulting from the interaction between Mb and the venom proteins. In addition, the mass spectra suggest the aromatic amino acids of myoglobin, mainly tryptophan and phenylalanine, are more exposed to the solvent medium upon the exposure to the venom solution. The results altogether indicate that the harmful effects of the venom of Crotalus basiliscus snake are likely connected to the blocking of the redox site of Mb242171178CNPQ - Conselho Nacional de Desenvolvimento Científico e Tecnológico307078/2017-5; 428741/2016-9; 306305/2015-1; 312030/2015-0; 403866/2016-2PRONEX/2015 PR2-0101-00030.01.00/15 SPU No.: 3265612/2015FUNCAP - Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológic
Small Municipalities in the Amazon under the Risk of Future Climate Change
The focus of this work is on small municipalities (population below 50 thousand inhabitants) that cover around 87% of the territory of the Brazilian Legal Amazon (BLA). Based on a comprehensive integrated analysis approach using the three components hazard (climate extremes from CMIP6 future scenarios), exposure (directly affected population), and vulnerability (subdimensions of susceptibility and coping/adaptive capacity by using multidimensional indicators), the latter two using current datasets provided by the official Census IBGE 2022, we document a quantitative assessment of the risk R of natural disasters in the BLA region. We evidenced a worrying and imminent intensification of the curve of R in most Amazonian municipalities over the next two 25-year periods. The overall results of the highest proportions of R (total municipalities affected) pointed out the Amazonas, Roraima, Pará, and Maranhão as the main states, presenting projected categories of R high in the near future (2015 to 2039) and very high in the far future (2040 to 2064). The detailed assessment of the susceptibility and coping/adaptive capacity allowed us to elucidate the principal indicators that aggravate the degree of vulnerability: economy, the precariousness of urban infrastructure, medical services, communication, and urban mobility, whose combined factors, unfortunately, reveal a widespread poverty profile along the small Amazonian municipalities. Our scientific findings can assist decision makers in targeted strategies planning and public policies to minimize and mitigate ongoing and future climate change