4,416 research outputs found
The Nature of the Chemical Bond. VII. The Calculation of Resonance Energy in Conjugated Systems
The quantum‐mechanical treatment previously applied to benzene, naphthalene, and the hydrocarbon free radicals is used in the calculation of extra resonance energy of conjugation in systems of double bonds, the dihydronaphthalenes and dihydroanthracenes, phenylethylene, stilbene, isostilbene, triphenylethylene, tetraphenylethylene, biphenyl, o, m, and p‐diphenylbenzene, and 1,3,5‐triphenylbenzene. The calculated values, which are in approximate agreement with empirical values from thermochemical data, are used in the discussion of chemical properties and in the formulation of rules regarding conjugation in overlapping systems
Ab-initio calculation of the effect of stress on the chemical activity of graphene
Graphene layers are stable, hard, and relatively inert. We study how tensile
stress affects and bonds and the resulting change in the
chemical activity. Stress affects more strongly bonds that can become
chemically active and bind to adsorbed species more strongly. Upon stretch,
single C bonds are activated in a geometry mixing and ; an
intermediate state between and bonding. We use ab-initio
density functional theory to study the adsorption of hydrogen on large clusters
and 2D periodic models for graphene. The influence of the exchange-correlation
functional on the adsorption energy is discussed
X-ray photoelectron spectroscopy studies of non-stoichiometric superconducting NbB2+x
Polycrystalline samples of NbB2+x with nominal composition (B/Nb) = 2.0, 2.1,
2.2, 2.3, 2.4 and 2.5 were studied by X-ray photoelectron spectroscopy (XPS).
The spectra revealed Nb and B oxides on the surface of the samples, mainly B2O3
and Nb2O5. After Ar ion etching the intensity of Nb and B oxides decreased. The
Nb 3d5/2 and B 1s core levels associated with the chemical states (B/Nb) were
identified and they do not change with etching time. The Binding Energy of the
Nb 3d5/2 and B 1s core levels increase as boron content increases, suggesting a
positive chemical shift in the core levels. On the other hand, analysis of
Valence Band spectra showed that the contribution of the Nb 4d states slightly
decreased while the contribution of the B 2p(pi) states increased as the boron
content increased. As a consequence, the electronic and superconducting
properties were substantially modified, in good agreement with band-structure
calculations.Comment: 10 pages, 7 figures, 1 tabl
Compressibilities, Force Constants, and Interatomic Distances of the Elements in the Solid State
Available data for the compressibilities of crystalline elements are used to calculate the force constants for the assumed Hooke's law interactions between adjacent atoms. On comparison of these constants and the equilibrium interatomic distances it is found that for many substances there holds the relation discovered by Badger for diatomic gas molecules: a linear relation between the reciprocal of the cube root of the force constant and the interatomic distance, for elements of a given row in the periodic table. Deviations from this relation are in the direction of increased compressibility. They are explained as resulting from changes in bond type (that is, in electronic structure) that permit the crystal to adjust itself to the increased pressure
Structure and optical properties of high light output halide scintillators
Structural and optical properties of several high light output halide
scintillators and closely related materials are presented based on first
principles calculations. The optical properties are based on the Engel-Vosko
generalized gradient approximation and the recently developed density
functional of Tran and Blaha. The materials investigated are BaBr, BaIBr,
BaCl, BaF, BaI, BiI, CaI, Cs_6_2_5_2_5_2_5_2_5_2_5_3_3_2_3_4_4$, most of these halides are highly isotropic from an
optical point of view even though in many cases the crystal structures and
other properties are not. This general result is rationalized in terms of
halide chemistry. Implications for the development of ceramic halide
scintillators are discussed
Quantum fluctuations in the effective pseudospin-1/2 model for magnetic pyrochlore oxides
The effective quantum pseudospin-1/2 model for interacting rare-earth
magnetic moments, which are locally described with atomic doublets, is studied
theoretically for magnetic pyrochlore oxides. It is derived microscopically for
localized Pr^{3+} 4f moments in Pr_2TM_2O_7 (TM = Zr, Sn, Hf, and Ir) by
starting from the atomic non-Kramers magnetic doublets and performing the
strong-coupling perturbation expansion of the virtual electron transfer between
the Pr 4f and O 2p electrons. The most generic form of the nearest-neighbor
anisotropic superexchange pseudospin-1/2 Hamiltonian is also constructed from
the symmetry properties, which is applicable to Kramers ions Nd^{3+}, Sm^{3+},
and Yb^{3+} potentially showing large quantum effects. The effective model is
then studied by means of a classical mean-field theory and the exact
diagonalization on a single tetrahedron and on a 16-site cluster. These
calculations reveal appreciable quantum fluctuations leading to quantum phase
transitions to a quadrupolar state as a melting of spin ice for the Pr^{3+}
case. The model also shows a formation of cooperative quadrupole moment and
pseudospin chirality on tetrahedrons. A sign of a singlet quantum spin ice is
also found in a finite region in the space of coupling constants. The relevance
to the experiments is discussed.Comment: 18 pages including 14 figures; Comparison with the magnetization
curve on Pr2Ir2O7 included; to appear in Phys. Rev.
Structural motifs of biomolecules
Biomolecular structures are assemblies of emergent anisotropic building
modules such as uniaxial helices or biaxial strands. We provide an approach to
understanding a marginally compact phase of matter that is occupied by proteins
and DNA. This phase, which is in some respects analogous to the liquid crystal
phase for chain molecules, stabilizes a range of shapes that can be obtained by
sequence-independent interactions occurring intra- and intermolecularly between
polymeric molecules. We present a singularityfree self-interaction for a tube
in the continuum limit and show that this results in the tube being positioned
in the marginally compact phase. Our work provides a unified framework for
understanding the building blocks of biomolecules.Comment: 13 pages, 5 figure
- …