4,416 research outputs found

    The Nature of the Chemical Bond. VII. The Calculation of Resonance Energy in Conjugated Systems

    Get PDF
    The quantum‐mechanical treatment previously applied to benzene, naphthalene, and the hydrocarbon free radicals is used in the calculation of extra resonance energy of conjugation in systems of double bonds, the dihydronaphthalenes and dihydroanthracenes, phenylethylene, stilbene, isostilbene, triphenylethylene, tetraphenylethylene, biphenyl, o, m, and p‐diphenylbenzene, and 1,3,5‐triphenylbenzene. The calculated values, which are in approximate agreement with empirical values from thermochemical data, are used in the discussion of chemical properties and in the formulation of rules regarding conjugation in overlapping systems

    Ab-initio calculation of the effect of stress on the chemical activity of graphene

    Get PDF
    Graphene layers are stable, hard, and relatively inert. We study how tensile stress affects σ\sigma and π\pi bonds and the resulting change in the chemical activity. Stress affects more strongly π\pi bonds that can become chemically active and bind to adsorbed species more strongly. Upon stretch, single C bonds are activated in a geometry mixing 120o120^{o} and 90o90^{o}; an intermediate state between sp2sp^{2} and sp3sp^{3} bonding. We use ab-initio density functional theory to study the adsorption of hydrogen on large clusters and 2D periodic models for graphene. The influence of the exchange-correlation functional on the adsorption energy is discussed

    Johnson grass as a weed in Missouri

    Get PDF
    "May, 1945

    X-ray photoelectron spectroscopy studies of non-stoichiometric superconducting NbB2+x

    Full text link
    Polycrystalline samples of NbB2+x with nominal composition (B/Nb) = 2.0, 2.1, 2.2, 2.3, 2.4 and 2.5 were studied by X-ray photoelectron spectroscopy (XPS). The spectra revealed Nb and B oxides on the surface of the samples, mainly B2O3 and Nb2O5. After Ar ion etching the intensity of Nb and B oxides decreased. The Nb 3d5/2 and B 1s core levels associated with the chemical states (B/Nb) were identified and they do not change with etching time. The Binding Energy of the Nb 3d5/2 and B 1s core levels increase as boron content increases, suggesting a positive chemical shift in the core levels. On the other hand, analysis of Valence Band spectra showed that the contribution of the Nb 4d states slightly decreased while the contribution of the B 2p(pi) states increased as the boron content increased. As a consequence, the electronic and superconducting properties were substantially modified, in good agreement with band-structure calculations.Comment: 10 pages, 7 figures, 1 tabl

    Soybeans for grain

    Get PDF
    "February , 1942

    Compressibilities, Force Constants, and Interatomic Distances of the Elements in the Solid State

    Get PDF
    Available data for the compressibilities of crystalline elements are used to calculate the force constants for the assumed Hooke's law interactions between adjacent atoms. On comparison of these constants and the equilibrium interatomic distances it is found that for many substances there holds the relation discovered by Badger for diatomic gas molecules: a linear relation between the reciprocal of the cube root of the force constant and the interatomic distance, for elements of a given row in the periodic table. Deviations from this relation are in the direction of increased compressibility. They are explained as resulting from changes in bond type (that is, in electronic structure) that permit the crystal to adjust itself to the increased pressure

    Structure and optical properties of high light output halide scintillators

    Full text link
    Structural and optical properties of several high light output halide scintillators and closely related materials are presented based on first principles calculations. The optical properties are based on the Engel-Vosko generalized gradient approximation and the recently developed density functional of Tran and Blaha. The materials investigated are BaBr2_2, BaIBr, BaCl2_2, BaF2_2, BaI2_2, BiI3_3, CaI2_2, Cs2LiYCl_2LiYCl_6,CsBa, CsBa_2BrBr_5,CsBa, CsBa_2II_5,K, K_2LaBrLaBr_5,K, K_2LaClLaCl_5,K,K_2LaILaI_5,LaBr, LaBr_3,LaCl, LaCl_3,SrBr, SrBr_2,andYI, and YI_3.ForcomparisonresultsarepresentedfortheoxideCdWO. For comparison results are presented for the oxide CdWO_4.WefindthattheTranBlahafunctionalgivesgreatlyimprovedbandgapsandopticalpropertiesinthisclassofmaterials.Furthermore,wefindthatunlikeCdWO. We find that the Tran Blaha functional gives greatly improved band gaps and optical properties in this class of materials. Furthermore, we find that unlike CdWO_4$, most of these halides are highly isotropic from an optical point of view even though in many cases the crystal structures and other properties are not. This general result is rationalized in terms of halide chemistry. Implications for the development of ceramic halide scintillators are discussed

    Quantum fluctuations in the effective pseudospin-1/2 model for magnetic pyrochlore oxides

    Full text link
    The effective quantum pseudospin-1/2 model for interacting rare-earth magnetic moments, which are locally described with atomic doublets, is studied theoretically for magnetic pyrochlore oxides. It is derived microscopically for localized Pr^{3+} 4f moments in Pr_2TM_2O_7 (TM = Zr, Sn, Hf, and Ir) by starting from the atomic non-Kramers magnetic doublets and performing the strong-coupling perturbation expansion of the virtual electron transfer between the Pr 4f and O 2p electrons. The most generic form of the nearest-neighbor anisotropic superexchange pseudospin-1/2 Hamiltonian is also constructed from the symmetry properties, which is applicable to Kramers ions Nd^{3+}, Sm^{3+}, and Yb^{3+} potentially showing large quantum effects. The effective model is then studied by means of a classical mean-field theory and the exact diagonalization on a single tetrahedron and on a 16-site cluster. These calculations reveal appreciable quantum fluctuations leading to quantum phase transitions to a quadrupolar state as a melting of spin ice for the Pr^{3+} case. The model also shows a formation of cooperative quadrupole moment and pseudospin chirality on tetrahedrons. A sign of a singlet quantum spin ice is also found in a finite region in the space of coupling constants. The relevance to the experiments is discussed.Comment: 18 pages including 14 figures; Comparison with the magnetization curve on Pr2Ir2O7 included; to appear in Phys. Rev.

    Structural motifs of biomolecules

    Full text link
    Biomolecular structures are assemblies of emergent anisotropic building modules such as uniaxial helices or biaxial strands. We provide an approach to understanding a marginally compact phase of matter that is occupied by proteins and DNA. This phase, which is in some respects analogous to the liquid crystal phase for chain molecules, stabilizes a range of shapes that can be obtained by sequence-independent interactions occurring intra- and intermolecularly between polymeric molecules. We present a singularityfree self-interaction for a tube in the continuum limit and show that this results in the tube being positioned in the marginally compact phase. Our work provides a unified framework for understanding the building blocks of biomolecules.Comment: 13 pages, 5 figure

    A fast way to seed hairy vetch in cotton

    Get PDF
    "July, 1946
    corecore