46 research outputs found

    Role for DNA repair factor XRCC4 in immunoglobulin class switch recombination

    Get PDF
    V(D)J recombination and immunoglobulin class switch recombination (CSR) are two somatic rearrangement mechanisms that proceed through the introduction of double-strand breaks (DSBs) in DNA. Although the DNA repair factor XRCC4 is essential for the resolution of DNA DSB during V(D)J recombination, its role in CSR has not been established. To bypass the embryonic lethality of XRCC4 deletion in mice, we developed a conditional XRCC4 knockout (KO) using LoxP-flanked XRCC4 cDNA lentiviral transgenesis. B lymphocyte restricted deletion of XRCC4 in these mice lead to an average two-fold reduction in CSR in vivo and in vitro. Our results connect XRCC4 and the nonhomologous end joining DNA repair pathway to CSR while reflecting the possible use of an alternative pathway in the repair of CSR DSB in the absence of XRCC4. In addition, this new conditional KO approach should be useful in studying other lethal mutations in mice

    Developmental partitioning of SYK and ZAP70 prevents autoimmunity and cancer

    Get PDF
    Even though SYK and ZAP70 kinases share high sequence homology and serve analogous functions, their expression in B and T cells is strictly segregated throughout evolution. Here, we identified aberrant ZAP70 expression as a common feature in a broad range of B cell malignancies. We validated SYK as the kinase that sets the thresholds for negative selection of autoreactive and premalignant clones. When aberrantly expressed in B cells, ZAP70 competes with SYK at the BCR signalosome and redirects SYK from negative selection to tonic PI3K signaling, thereby promoting B cell survival. In genetic mouse models for B-ALL and B-CLL, conditional expression of Zap70 accelerated disease onset, while genetic deletion impaired malignant transformation. Inducible activation of Zap70 during B cell development compromised negative selection of autoreactive B cells, resulting in pervasive autoantibody production. Strict segregation of the two kinases is critical for normal B cell selection and represents a central safeguard against the development of autoimmune disease and B cell malignancies.acceptedVersionPeer reviewe

    Désensibilisation dans le traitement de la rhinite et conjonctivite allergiques

    No full text
    STRASBOURG ILLKIRCH-Pharmacie (672182101) / SudocSudocFranceF

    Rôle des facteurs génétiques et environnementaux dans l'asthme

    No full text
    STRASBOURG ILLKIRCH-Pharmacie (672182101) / SudocSudocFranceF

    Thérapies actuelles et futures du mélanome cutané

    No full text
    STRASBOURG ILLKIRCH-Pharmacie (672182101) / SudocSudocFranceF

    Cancer du sein HER2+ et résistances aux thérapies actuelles (perspectives des immunoconjugués)

    No full text
    STRASBOURG ILLKIRCH-Pharmacie (672182101) / SudocSudocFranceF

    La thérapeutique actuelle et future de l'allergie

    No full text
    STRASBOURG ILLKIRCH-Pharmacie (672182101) / SudocSudocFranceF

    Trib1 Is Overexpressed in Systemic Lupus Erythematosus, While It Regulates Immunoglobulin Production in Murine B Cells

    No full text
    Systemic lupus erythematosus (SLE) is a severe and heterogeneous autoimmune disease with a complex genetic etiology, characterized by the production of various pathogenic autoantibodies, which participate in end-organ damages. The majority of human SLE occurs in adults as a polygenic disease, and clinical flares interspersed with silent phases of various lengths characterize the usual evolution of the disease in time. Trying to understand the mechanism of the different phenotypic traits of the disease, and considering the central role of B cells in SLE, we previously performed a detailed wide analysis of gene expression variation in B cells from quiescent SLE patients. This analysis pointed out an overexpression of TRIB1. TRIB1 is a pseudokinase that has been implicated in the development of leukemia and also metabolic disorders. It is hypothesized that Trib1 plays an adapter or scaffold function in signaling pathways, notably in MAPK pathways. Therefore, we planned to understand the functional significance of TRIB1 overexpression in B cells in SLE. We produced a new knock-in model with B-cell-specific overexpression of Trib1. We showed that overexpression of Trib1 specifically in B cells does not impact B cell development nor induce any development of SLE symptoms in the mice. By contrast, Trib1 has a negative regulatory function on the production of immunoglobulins, notably IgG1, but also on the production of autoantibodies in an induced model. We observed a decrease of Erk activation in BCR-stimulated Trib1 overexpressing B cells. Finally, we searched for Trib1 partners in B cells by proteomic analysis in order to explore the regulatory function of Trib1 in B cells. Interestingly, we find an interaction between Trib1 and CD72, a negative regulator of B cells whose deficiency in mice leads to the development of autoimmunity. In conclusion, the overexpression of Trib1 could be one of the molecular pathways implicated in the negative regulation of B cells during SLE

    B cells in primary antiphospholipid syndrome: Review and remaining challenges

    No full text
    It is now widely accepted that antiphospholipid antibodies (aPL) have direct pathogenic effects and that B cells, notably through aPL production, play a key role in the development of antiphospholipid syndrome (APS). Recent findings strengthened the implication of B cells with the description of specific B cell phenotype abnormalities and inborn errors of immunity involving B cell signaling in APS patients. In addition, it has been shown in preclinical models that cross-reactivity between APS autoantigens and mimotopes expressed by human gut commensals can lead to B cell tolerance breakdown and are sufficient for APS development. However, B cell targeting therapies are surprisingly not as effective as expected in APS compared to other autoimmune diseases. Elucidation of the B cell tolerance breakdown mechanisms in APS patients may help to develop and guide the use of novel therapeutic agents that target B cells or specific immune pathway
    corecore