4 research outputs found

    Dry Reforming of Methane over Carbon Fibre-Supported CeZrO2, Ni-CeZrO2, Pt-CeZrO2 and Pt-Ni-CeZrO2 Catalysts

    No full text
    Dry reforming of methane (DRM) is one of the most important processes allowing transformation of two most potent greenhouse gases into a synthesis gas. The CH4 and CO2 are converted at high temperatures in the presence of a metal catalyst (usually Ni, also promoted with noble metals, supported over various oxides). The DRM process is not widely used in the gas processing industry because of prompt deactivation of the catalyst owing to carbon deposition and the blockage of the metal active sites. This problem can be hindered by proper design of the catalyst in terms, e.g., of its composition and by providing strong interaction between active metal and catalytic support. The properties of the latter are also crucial for the catalyst’s performance in DRM and the occurrence of parallel reactions such as reverse water gas shift, CO2 deoxidation or carbon formation. In this paper we show for the first time the DRM performance of the ceria-zirconia and metal (Ni and/or Pt) supported on carbon fibres. The obtained Ni and Ni-Pt containing catalysts showed relatively high activity in the studied reaction and high resistance towards carbon deposition

    On the HKUST-1/GO and HKUST-1/rGO Composites: The Impact of Synthesis Method on Physicochemical Properties

    No full text
    The chemical stability and adsorptive/catalytic properties of the most widely studied metal–organic framework (MOF), which is HKUST-1, can be improved by its combination with graphene oxide (GO) or reduced graphene oxide (rGO). The chemistry of GO or rGO surfaces has a significant impact on their interaction with MOFs. In this work, we demonstrate that GO and rGO interaction with HKUST-1 influences the morphology and textural properties but has no impact on the thermal stability of the final composites. We also show that synthesis environment, e.g., stirring, to some extent influences the formation of HKUST-1/GO and HKUST-1/rGO composites. Homogeneous samples of the sandwich-type composite can be obtained when using reduced graphene oxide decorated with copper (Cu/rGO), which, owing to the presence of Cu sites, allows the direct crystallisation of HKUST-1 and its further growth on the graphene surface. This work is the first part of our research on HKUST-1/GO and HKUST-1/rGO and deals with the influence of the type of graphene material and synthesis parameters on the composites’ physicochemical properties that were determined by using X-ray diffraction, scanning and transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis

    Dry Reforming of Methane over CNT-Supported CeZrO2, Ni and Ni-CeZrO2 Catalysts

    No full text
    In this work, the carbon nanotubes (CNT)-supported nanosized, well-dispersed, CeZrO2 and Ni-CeZrO2 catalysts were obtained and tested for the first time in the reaction of methane dry reforming (DRM). The performance of the hybrid materials was compared with the performance of Ni/CNT catalyst. The mechanism of the DRM reaction and the occurrence of reverse water gas shift reaction (RWGS) and CO2 deoxidation were discussed in terms of catalysts composition. The contribution of RWGS and CO2 deoxidation in the DRM process, demonstrating an increased CO2 consumption when compared to CH4, and H2/CO < 1, varied depending on the catalyst composition, was also studied

    HKUST-1-Supported Cerium Catalysts for CO Oxidation

    Get PDF
    The synthesis method of metal–organic frameworks (MOFs) has an important impact on their properties, including their performance in catalytic reactions. In this work we report on how the performance of [Cu3(TMA)2(H2O)3]n (HKUST-1) and Ce@HKUST-1 in the reaction of CO oxidation depends on the synthesis method of HKUST-1 and the way the cerium active phase is introduced to it. The HKUST-1 is synthesised in two ways: via the conventional solvothermal method and in the presence of a cationic surfactant (hexadecyltrimethylammonium bromide (CTAB)). Obtained MOFs are used as supports for cerium oxide, which is deposited on their surfaces by applying wet and incipient wetness impregnation methods. To determine textural properties, structure, morphology, and thermal stability, the HKUST-1 supports and Ce@HKUST-1 catalysts are characterised using X-ray diffraction (XRD), N2 sorption, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). It is proven that the synthesis method of HKUST-1 has a significant impact on its morphology, surface area, and thermal stability. The synthesis method also influences the dispersion and the morphology of the deposited cerium oxide. Last but not least, the synthesis method affects the catalytic activity of the obtained material.This research was founded by a statutory activity subsidy from the Polish Ministry of Science and Higher Education for the Faculty of Chemistry of Wrocław University of Technology and the project number 0402/0029/18. The APC was founded by the Faculty of Chemistry of Wrocław University of Technology
    corecore