353 research outputs found

    Resistance to salts of lime and pozzolan mortars

    Get PDF
    International RILEM Workshop on Repairs Mortars for Historic Masonry, Technical University of Delft, 2009This paper presents and analyses the results of chlorides and sulphates resistance tests of lime and pozzolan mortars (1:1:4, hydrated lime:pozzolanic component:river sand, in volume) which seemed to be efficient for historic buildings and correlate them with other characteristics involved, as the cases of porosity, mechanical resistances and hydraulic compounds development

    Current mortars in conservation: an overview

    Get PDF
    Renders are an important item in historical buildings and the need for their periodical re-application is a basic conservation procedure. In modern times there has been a trend towards the replacement of traditional pure lime mortars by new formulations including Portland cement or hydraulic lime. Apart from those interventions on specific and very important monuments, in which the use oftraditional non-hydraulic mortars can be enforced, in most of the projects involving less than first order magnitude heritage the use of some sort of hydraulic components is becoming the rule rather than the exception. The present paper describes and analyses the results of an experimental study with ten formulations of current mortars - including some that can hardly be considered as adequate conservation procedures - allowing a direct comparison in terms of some of the most relevant characteristics

    Characterization of earthen plasters – Influence of formulation and experimental methods

    Get PDF
    All over the world there is a vast heritage of earth construction where earth plasters were applied. Nowadays, due to environmental but also technical reasons, new earth plasters are also applied on common new masonries. That is why its characterization, in the laboratory but also in situ, is very important. In the present study, a pre-mixed earth plastering mortar (as control) and nine earth-based plastering mortars formulated in laboratory with different compositions were characterized. These mortars were formulated with 1:3 (illitic clayish earth:aggregate) volumetric ratio. The aggregate comprises a variation of fine and coarse sand and the partial replacement of the fine sand by a phase change material (PCM). The influence of the addition of a low amount of oat fibers is also evaluated. The mortars were characterized by different methods in laboratory and on an experimental wall exposed outdoors by destructive and nondestructive methods: dry bulk density, dynamic modulus of elasticity, flexural and compressive strengths, adhesive and shear strengths, dry abrasion resistance, surface cohesion, ultrasonic pulse velocity and hardness. Results were discussed and some were correlated. Most mortars present good mechanical strengths. However, the addition of PCM significantly decrease the mechanical strength of mortars. In terms of mechanical properties, the addition of oat fibers only promotes an improvement on adhesive strength. The simple surface hardness by durometer present laboratory and in situ results well correlated for earth mortars without PCM.publishersversionpublishe

    Earth mortars constructive use on Neolithic domestic structures. Some case studies in Alentejo.

    Get PDF
    HMC08 - 1st Historical Mortars Conference: Characterization, Diagnosis, Conservation, Repair and Compatibility, LNEC, Lisbon, 24-26 September 2008Earth mortars were constructively used since Ancient Neolithic in Southwest Iberia pre-historic habitat places. According to archaeological information, these materials were applied on Neolithic Period to render ditches; latter, on Copper and Bronze Age, earth mortars were also used binding stone masonry, covering and filling vegetable structures, in mudbrick masonry and probably in massive walls. This paper aims to show some specific information about earth constructive traces obtained in interior Alentejo neolithic settlements of Defesa de Cima 2, Lajinha 8, Horta do Albardão 3, Valada do Mato (Évora district) and Toca da Raposa (Portalegre district). The analysed materials were composed by samples of burned clayish mortars coming from renderings or small thickness walls of probable storage bins and combustion structures. The samples descriptions include the drawing, measurement and photographic record of the chosen traces and also structural and granulometric analysis. The authors believe these analyses can contribute to deeper the knowledge of pre-historic domestic structures and constructive techniques, making possible technological reproduction of habitat settlements

    NHL 3.5 mortars with scrap tire rubber

    Get PDF
    The use of wastes and industrial by-products as building materials is an important issue in order to decrease costs with waste management and the embodied energy of building products. Scrap tire rubber has been studied as aggregate for cementitious materials. Natural hydraulic limes are natural binders with particular characteristics of both air and hydraulic binders. Their specifications became stricter with the last version of EN 459-1:2010. In this study scrap tire rubber was used as additional aggregate of mortars, based on NHL3.5 and natural sand. Different particle size fractions and proportions of scrap tire rubber were used: a mix obtained almost directly from industry (only after sieving for preparation of particle sizes similar to mortar aggregate) and separated fine, medium and coarse fractions; 0%, 18%, 36% and 54% weight of binder, corresponding to 2.5%, 5% and 7.5% weight of sand. The influence of the rubbers´ additions on the mortars´ fresh state, mechanical and physical performance is presented, namely by flow table consistency, water retention, fresh bulk density, dynamic elasticity modulus, flexural and compressive strength, open porosity and bulk density, capillary absorption, drying and thermal conductivity. The use of the rubber mix coming from the waste tire industry seems advantageous and may open possibilities for use as raw material by the mortars industry

    Natural hydraulic lime mortars: influence of the aggregates

    Get PDF
    3rd Historic Mortars Conference, 11-14 September 2013, Glasgow, ScotlandNatural hydraulic lime specifications changed with the new version of standard EN 459-1: 2010 and a new Portuguese NHL3.5 appeared in the market. The characteristics of mortars depend on many different parameters such as the type of binder, the type of aggregates, the use of fillers and of superplasticizers; also on mixing and curing conditions. In this paper NHL3.5 mortars with binder:aggregate volumetric proportions1:3 were prepared, varying the aggregates type and proportions between them. Two coarse sands, a medium sand, a river sand, a finer sand, a calcareous filler and a ceramic powder were used. The two last mentioned aggregates were byproducts from industry. Prismatic mortar samples and samples of mortar applied over brick were prepared and conditioned in two different situations – following standard EN 1015-11 and at 65% relative humidity with initial daily water spray. Mortars were characterized in the fresh state and at the age of 28 days. Results showed the influence namely of the curing, particularly in terms of water capillary, of the superplasticizer and of the fillers. They also showed that NHL3.5 mortars seem to be adequate for old masonries conservation and repair and, in some situations, they can be an alternative to air lime based mortars

    СУХИЕ СТРОИТЕЛЬНЫЕ СМЕСИ НА ОСНОВЕ ПРИРОДНОЙ ГИДРАВЛИЧЕСКОЙ ИЗВЕСТИ (NHL 3.5) С ДОБАВКОЙ РЕЗИНОВОЙ КРОШКИ, ПОЛУЧЕННОЙ ИЗ ОТРАБОТАННЫХ ПОКРЫШЕК (in Russian)

    Get PDF
    The use of wastes and industrial by-products as building materials is an important issue in order to decrease costs with waste management and the embodied energy of building products. In this study scrap tire rubber was used as additional aggregate of mortars based on natural hydraulic lime NHL 3.5 and natural sand. Different particle size fractions and proportions of scrap tire rubber were used: a mix obtained directly from industry and separated fine, medium and coarse fractions; 0 %, 18 %, 36 % and 54 % of the weight of binder, corresponding to 2.5 %, 5 % and 7.5 % of the weight of sand. As mortars based on NHL specifications became stricter with the current version of EN 459–1:2015, the influence of the rubber’s additions on the mortars’ fresh state, mechanical and physical performance is presented in this work: flow table consistency, water retention, dynamic elasticity modulus, flexural and compressive strength, open porosity and bulk density, capillary absorption, drying and thermal conductivity are studied. The use of the rubber mix coming from the waste tire industry seems advantageous and may open possibilities for use as raw material by the mortars industry.Secil Argamassa

    Earthen plasters: the potential of the clayey soils of barrocal region in Algarve

    Get PDF
    Due to their high adsorption capacity of water vapor, earthen plasters can act as a moisture buffer, contributing to balance the relative humidity of the indoor environment of buildings. As a consequence of this capacity earthen plasters may also contribute to the perception of thermal comfort, since a high relative humidity increases the thermal conductivity of air and restricts skin evaporation, increasing the discomfort associated with the perception of heat or cold. Simultaneously, earthen plasters may also contribute to the indoor air quality. In one hand, by mitigating health problems of the respiratory system associated with indoor environment with high relative humidity, in which increases the risk of development of microorganisms usually responsible for infections, allergies or asthma. In the other hand, by mitigating the probability of inflammation of the respiratory system airways associated to exceedingly dry indoor environments. Therefore it also becomes expectable that earthen plasters may contribute for reducing the needs for air conditioning and mechanical ventilation in buildings and, thereby, also allowing the reduction of the associated energy consumption. The «Barrocal» region, located in the sedimentary basin of Algarve, South Portugal, presents geomorphological characteristics that promote the occurrence of soils with a clay mineralogy dominated by illite, which is a clay mineral characterized by a high adsorption capacity of water vapor and low expansibility. This fact turns expectable that these soils have a high potential for interior plastering. In order to evaluate this potential four mortars were formulated with an increasing content of clayey soil extracted from a selected clay quarry from «Barrocal» region. The results from the preliminary characterization campaign confirmed the reduced linear shrinkage of these mortars, as well as their high adsorption-desorption capacity, that is positively correlated with the content of clayey soil present in mortar formulation. However, the mechanical tests showed that the mechanical resistance of these mortars should be improved, for instance through the addition of natural fibers for reinforcement, which will be investigated in future research. This research contributed to increase certainty regarding the potential of clayey soils of the «Barrocal» sub-region of Algarve to produce mortars suitable for eco-efficient interior plastering

    Hygrothermal behaviour of earthen plasters for sustainable housing construction

    Get PDF
    A ready-mixed and several laboratory formulated mortars were produced and tested in fresh state and after hardening, simulating a masonry plaster for indoor application. All the mortars used a clayish earth from the same region and different compositions of aggregates, eventually including fibres and a phase change material. All the formulated mortars were composed by 1:3 volumetric proportions of earth and aggregate. Tests were developed for consistency, fresh bulk density, thermal conductivity, capillary absorption and drying, water vapour permeability and sorption-desorption. The use of PCM changed drastically the workability of the mortars and increased their capillary absorption. The use of fibres and variations on particle size distribution of the mixtures of sand that were used had no significant influence on tested properties. But particularly the good workability of these mortars and the high capacity of sorption and desorption was highlighted. With this capacity plasters made with these mortars are able to adsorb water vapour from indoor atmosphere when high levels of relative humidity exist and release water vapour when the indoor atmosphere became too dry. This fact makes them able to contribute passively for a healthier indoor environment. The technical, ecological and environmental advantages of the application of plasters with this type of mortars are emphasized, with the aim of contributing for an increased use for new or existent housing
    corecore