11 research outputs found

    Complex Odor from Plants under Attack: Herbivore's Enemies React to the Whole, Not Its Parts

    Get PDF
    Background: Insect herbivory induces plant odors that attract herbivores ’ natural enemies. Assuming this attraction emerges from individual compounds, genetic control over odor emission of crops may provide a rationale for manipulating the distribution of predators used for pest control. However, studies on odor perception in vertebrates and invertebrates suggest that olfactory information processing of mixtures results in odor percepts that are a synthetic whole and not a set of components that could function as recognizable individual attractants. Here, we ask if predators respond to herbivoreinduced attractants in odor mixtures or to odor mixture as a whole. Methodology/Principal Findings: We studied a system consisting of Lima bean, the herbivorous mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. We found that four herbivore-induced bean volatiles are not attractive in pure form while a fifth, methyl salicylate (MeSA), is. Several reduced mixtures deficient in one component compared to the full spider-mite induced blend were not attractive despite the presence of MeSA indicating that the predators cannot detect this component in these odor mixtures. A mixture of all five HIPV is most attractive, when offered together with the noninduced odor of Lima bean. Odors that elicit no response in their pure form were essential components of the attractive mixture. Conclusions/Significance: We conclude that the predatory mites perceive odors as a synthetic whole and that th

    The experimental setup.

    No full text
    <p>The choice arena was constructed from a Petri dish (Ø 9 cm) positioned up side down. An insect glue barrier (ig) divided the dish in two compartments that each contained an odor source (o) An opening at the bottom allowed for the connection of a cartridge containing the mites. The cartridge (c) was fitted to a vacuum pump. The vacuum gives rise to a radial airflow over the bottom of the choice arena, thus establishing two odor fields that extended from the odor sources to the cartridge. Arrows indicate air flow direction in the system.</p

    Response to a mixture of all five spider mite induced volatiles of Lima bean.

    No full text
    <p>The odor of spider-mite-infested Lima bean (IB) was more attractive than the artificial mixture, plus a Lima bean leaf disc (B+M5) if no odor (NO) was the alternative. The artificial mixture plus the odor of non-infested Lima bean (B+M5) was preferred over a Lima bean leaf disc (B) to a similar extent as a spider-mite infested leaf disc (IB) was preferred to B. In a direct test the mites did not differentiate between the artificial odor (M5+B) and the odor of spider-mite-infested Lima bean (IB). The Y-axis represents the preference index (−100 total repellence, +100 total attraction). A star above the bar indicates a choice based on significance of G<sub>p</sub><0.05. Horizontal bracket bars with stars below the bars represent significant differences betwwen the pooled experimental results based on a Chi-square test (P<0.05).</p

    data context-dependent signalling in an insect

    No full text
    Excel file with the data of the total amount of alarm pheromone and the relative amounts of its two compounds (as explained in further detail in the Excel file); there is a separate sheet for each of the five treatments
    corecore