929 research outputs found

    Semiclassical approximation to supersymmetric quantum gravity

    Full text link
    We develop a semiclassical approximation scheme for the constraint equations of supersymmetric canonical quantum gravity. This is achieved by a Born-Oppenheimer type of expansion, in analogy to the case of the usual Wheeler-DeWitt equation. The formalism is only consistent if the states at each order depend on the gravitino field. We recover at consecutive orders the Hamilton-Jacobi equation, the functional Schrodinger equation, and quantum gravitational correction terms to this Schrodinger equation. In particular, the following consequences are found: (i) the Hamilton-Jacobi equation and therefore the background spacetime must involve the gravitino, (ii) a (many fingered) local time parameter has to be present on SuperRiemΣSuperRiem \Sigma (the space of all possible tetrad and gravitino fields), (iii) quantum supersymmetric gravitational corrections affect the evolution of the very early universe. The physical meaning of these equations and results, in particular the similarities to and differences from the pure bosonic case, are discussed.Comment: 34 pages, clarifications added, typos correcte

    Non-semisimple Lie algebras with Levi factor \frak{so}(3), \frak{sl}(2,R) and their invariants

    Get PDF
    We analyze the number N of functionally independent generalized Casimir invariants for non-semisimple Lie algebras \frak{s}\overrightarrow{% oplus}_{R}\frak{r} with Levi factors isomorphic to \frak{so}(3) and \frak{sl}(2,R) in dependence of the pair (R,\frak{r}) formed by a representation R of \frak{s} and a solvable Lie algebra \frak{r}. We show that for any dimension n >= 6 there exist Lie algebras \frak{s}\overrightarrow{\oplus}_{R}\frak{r} with non-trivial Levi decomposition such that N(\frak{s}% \overrightarrow{oplus}_{R}\frak{r}) = 0.Comment: 16 page

    Perturbative quantum gauge invariance: Where the ghosts come from

    Full text link
    A condensed introduction to quantum gauge theories is given in the perturbative S-matrix framework; path integral methods are used nowhere. This approach emphasizes the fact that it is not necessary to start from classical gauge theories which are then subject to quantization, but it is also possible to recover the classical group structure and coupling properties from purely quantum mechanical principles. As a main tool we use a free field version of the Becchi-Rouet-Stora-Tyutin gauge transformation, which contains no interaction terms related to a coupling constant. This free gauge transformation can be formulated in an analogous way for quantum electrodynamics, Yang-Mills theories with massless or massive gauge bosons and quantum gravity.Comment: 28 pages, LATEX. Some typos corrected, version to be publishe

    Diquark Bose Condensates in High Density Matter and Instantons

    Get PDF
    Instantons lead to strong correlations between up and down quarks with spin zero and anti-symmetric color wave functions. In cold and dense matter, nb>nc≃1fm−3n_b>n_c\simeq 1 fm^{-3} and T<Tc∼T<T_c\sim 50 MeV, these pairs Bose-condense, replacing the usual condensateandrestoringchiralsymmetry.Athighdensity,thegroundstateisacolorsuperconductorinwhichdiquarksplaytheroleofCooperpairs.AninterestingtoymodelisprovidedbyQCDwithtwocolors:ithasaparticle−anti−particlesymmetrywhichrelates condensate and restoring chiral symmetry. At high density, the ground state is a color superconductor in which diquarks play the role of Cooper pairs. An interesting toy model is provided by QCD with two colors: it has a particle-anti-particle symmetry which relates and condensates.Comment: 4 pages ReVTeX, 2 eps-figures included using epsf.st

    On the Connection Between Momentum Cutoff and Operator Cutoff Regularizations

    Full text link
    Operator cutoff regularization based on the original Schwinger's proper-time formalism is examined. By constructing a regulating smearing function for the proper-time integration, we show how this regularization scheme simulates the usual momentum cutoff prescription yet preserves gauge symmetry even in the presence of the cutoff scales. Similarity between the operator cutoff regularization and the method of higher (covariant) derivatives is also observed. The invariant nature of the operator cutoff regularization makes it a promising tool for exploring the renormalization group flow of gauge theories in the spirit of Wilson-Kadanoff blocking transformation.Comment: 28 pages in plain TeX, no figures. revised and expande

    Equilibrium basal-plane magnetization of superconductive YNi(2)B(2)C - the influence of non-local electrodynamics

    Full text link
    For a single crystal of YNi(2)B(2)C superconductor, the equilibrium magnetization M in the square basal plane has been studied experimentally as a function of temperature and magnetic field. While the magnetization M(H) deviates from conventional London predictions, a recent extension of London theory (to include effects of non-local electrodynamics) describes the experiments accurately. The resulting superconductive parameters are well behaved. These results are compared with corresponding findings for the case with M perpendicular to the basal plane.Comment: 7 pages, 5 Postscript Figures, 2 table

    Analysis and Purification of Bioactive Natural Products: The AnaPurNa Study

    Get PDF
    Based on a meta-analysis of data mined from almost 2000 publications on bioactive natural products (NPs) from >80 000 pages of 13 different journals published in 1998−1999, 2004−2005, and 2009−2010, the aim of this systematic review is to provide both a survey of the status quo and a perspective for analytical methodology used for isolation and purity assessment of bioactive NPs. The study provides numerical measures of the common means of sourcing NPs, the chromatographic methodology employed for NP purification, and the role of spectroscopy and purity assessment in NP characterization. A link is proposed between the observed use of various analytical methodologies, the challenges posed by the complexity of metabolomes, and the inescapable residual complexity of purified NPs and their biological assessment. The data provide inspiration for the development of innovative methods for NP analysis as a means of advancing the role of naturally occurring compounds as a viable source of biologically active agents with relevance for human health and global benefit

    Systematics of Fission Barriers in Superheavy Elements

    Get PDF
    We investigate the systematics of fission barriers in superheavy elements in the range Z = 108-120 and N = 166-182. Results from two self-consistent models for nuclear structure, the relativistic mean-field (RMF) model as well as the non-relativistic Skyrme-Hartree-Fock approach are compared and discussed. We restrict ourselves to axially symmetric shapes, which provides an upper bound on static fission barriers. We benchmark the predictive power of the models examining the barriers and fission isomers of selected heavy actinide nuclei for which data are available. For both actinides and superheavy nuclei, the RMF model systematically predicts lower barriers than most Skyrme interactions. In particular the fission isomers are predicted too low by the RMF, which casts some doubt on recent predictions about superdeformed ground states of some superheavy nuclei. For the superheavy nuclei under investigation, fission barriers drop to small values around Z = 110, N = 180 and increase again for heavier systems. For most of the forces, there is no fission isomer for superheavy nuclei, as superdeformed states are in most cases found to be unstable with respect to octupole distortions.Comment: 17 pages REVTEX, 12 embedded eps figures. corrected abstrac

    Localizability of Tachyonic Particles and Neutrinoless Double Beta Decay

    Get PDF
    The quantum field theory of superluminal (tachyonic) particles is plagued with a number of problems, which include the Lorentz non-invariance of the vacuum state, the ambiguous separation of the field operator into creation and annihilation operators under Lorentz transformations, and the necessity of a complex reinterpretation principle for quantum processes. Another unsolved question concerns the treatment of subluminal components of a tachyonic wave packets in the field-theoretical formalism, and the calculation of the time-ordered propagator. After a brief discussion on related problems, we conclude that rather painful choices have to be made in order to incorporate tachyonic spin-1/2 particles into field theory. We argue that the field theory needs to be formulated such as to allow for localizable tachyonic particles, even if that means that a slight unitarity violation is introduced into the S matrix, and we write down field operators with unrestricted momenta. We find that once these choices have been made, the propagator for the neutrino field can be given in a compact form, and the left-handedness of the neutrino as well as the right-handedness of the antineutrino follow naturally. Consequences for neutrinoless double beta decay and superluminal propagation of neutrinos are briefly discussed.Comment: 12 pages, 5 figure

    Hadrons in AdS/QCD models

    Full text link
    We discuss applications of gauge/gravity duality to describe the spectrum of light hadrons. We compare two particular 5-dimensional approaches: a model with an infrared deformed Anti-de Sitter metric and another one based on a dynamical AdS/QCD framework with back-reacted geometry in a dilaton/gravity background. The models break softly the scale invariance in the infrared region and allow mass gap for the field excitations in the gravity description, while keeping the conformal property of the metric close to the four-dimensional boundary. The models provide linear Regge trajectories for light mesons, associated with specially designed infrared gravity properties. We also review the results for the decay widths of the f0's into two pions, as overlap integrals between mesonic string amplitudes, which are in qualitative agreement with data
    • …
    corecore