35 research outputs found

    The TAL Effector PthA4 Interacts with Nuclear Factors Involved in RNA-Dependent Processes Including a HMG Protein That Selectively Binds Poly(U) RNA

    Get PDF
    Plant pathogenic bacteria utilize an array of effector proteins to cause disease. Among them, transcriptional activator-like (TAL) effectors are unusual in the sense that they modulate transcription in the host. Although target genes and DNA specificity of TAL effectors have been elucidated, how TAL proteins control host transcription is poorly understood. Previously, we showed that the Xanthomonas citri TAL effectors, PthAs 2 and 3, preferentially targeted a citrus protein complex associated with transcription control and DNA repair. To extend our knowledge on the mode of action of PthAs, we have identified new protein targets of the PthA4 variant, required to elicit canker on citrus. Here we show that all the PthA4-interacting proteins are DNA and/or RNA-binding factors implicated in chromatin remodeling and repair, gene regulation and mRNA stabilization/modification. The majority of these proteins, including a structural maintenance of chromosomes protein (CsSMC), a translin-associated factor X (CsTRAX), a VirE2-interacting protein (CsVIP2), a high mobility group (CsHMG) and two poly(A)-binding proteins (CsPABP1 and 2), interacted with each other, suggesting that they assemble into a multiprotein complex. CsHMG was shown to bind DNA and to interact with the invariable leucine-rich repeat region of PthAs. Surprisingly, both CsHMG and PthA4 interacted with PABP1 and 2 and showed selective binding to poly(U) RNA, a property that is novel among HMGs and TAL effectors. Given that homologs of CsHMG, CsPABP1, CsPABP2, CsSMC and CsTRAX in other organisms assemble into protein complexes to regulate mRNA stability and translation, we suggest a novel role of TAL effectors in mRNA processing and translational control

    Typic: A Practical and Robust Tool to Rank Proteotypic Peptides for Targeted Proteomics

    No full text
    The selection of a suitable proteotypic peptide remains a challenge for designing a targeted quantitative proteomics assay. Although the criteria are well-established in the literature, the selection of these peptides is often performed in a subjective and time-consuming manner. Here, we have developed a practical and semiautomated workflow implemented in an open-source program named Typic. Typic is designed to run in a command line and a graphical interface to help selecting a list of proteotypic peptides for targeted quantitation. The tool combines the input data and downloads additional data from public repositories to produce a file per protein as output. Each output file includes relevant information to the selection of proteotypic peptides organized in a table, a colored ranking of peptides according to their potential value as targets for quantitation and auxiliary plots to assist users in the task of proteotypic peptides selection. Taken together, Typic leads to a practical and straightforward data extraction from multiple data sets, allowing the identification of most suitable proteotypic peptides based on established criteria, in an unbiased and standardized manner, ultimately leading to a more robust targeted proteomics assay

    Typic: A Practical and Robust Tool to Rank Proteotypic Peptides for Targeted Proteomics

    No full text
    The selection of a suitable proteotypic peptide remains a challenge for designing a targeted quantitative proteomics assay. Although the criteria are well-established in the literature, the selection of these peptides is often performed in a subjective and time-consuming manner. Here, we have developed a practical and semiautomated workflow implemented in an open-source program named Typic. Typic is designed to run in a command line and a graphical interface to help selecting a list of proteotypic peptides for targeted quantitation. The tool combines the input data and downloads additional data from public repositories to produce a file per protein as output. Each output file includes relevant information to the selection of proteotypic peptides organized in a table, a colored ranking of peptides according to their potential value as targets for quantitation and auxiliary plots to assist users in the task of proteotypic peptides selection. Taken together, Typic leads to a practical and straightforward data extraction from multiple data sets, allowing the identification of most suitable proteotypic peptides based on established criteria, in an unbiased and standardized manner, ultimately leading to a more robust targeted proteomics assay

    Inhibition of monoacylglycerol lipase terminates diazepam-resistant status epilepticus in mice and its effects are potentiated by a ketogenic diet

    No full text
    OBJECTIVE: Status epilepticus (SE) is a life-threatening and commonly drug-refractory condition. Novel therapies are needed to rapidly terminate seizures to prevent mortality and morbidity. Monoacylglycerol lipase (MAGL) is the key enzyme responsible for the hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) and a major contributor to the brain pool of arachidonic acid (AA). Inhibiting of monoacylglycerol lipase modulates synaptic activity and neuroinflammation, 2 mediators of excessive neuronal activation underlying seizures. We studied the effect of a potent and selective irreversible MAGL inhibitor, CPD-4645, on SE that was refractory to diazepam, its neuropathologic sequelae, and the mechanism underlying the drug's effects. METHODS: Diazepam-resistant SE was induced in adult mice fed with standard or ketogenic diet or in cannabinoid receptor type 1 (CB1) receptor knock-out mice. CPD-4645 (10 mg/kg, subcutaneously) or vehicle was dosed 1 and 7 h after status epilepticus onset in video-electroencephalography (EEG) recorded mice. At the end of SE, mice were examined in the novel object recognition test followed by neuronal cellloss analysis. RESULTS: CPD-4645 maximal plasma and brain concentrations were attained 0.5 h postinjection (half-life = 3.7 h) and elevated brain 2-AG levels by approximately 4-fold. CPD-4645 administered to standard diet-fed mice progressively reduced spike frequency during 3 h postinjection, thereby shortening SE duration by 47%. The drug immediately abrogated SE in ketogenic diet-fed mice. CPD-4645 rescued neuronal cell loss and cognitive deficit and reduced interleukin (IL)-1β and cyclooxygenase 2 (COX-2) brain expression resulting from SE. The CPD-4645 effect on SE was similar in mice lacking CB1 receptors. SIGNIFICANCE: MAGL represents a novel therapeutic target for treating status epilepticus and improving its sequelae. CPD-4645 therapeutic effects appear to be predominantly mediated by modulation of neuroinflammation

    Congenic strains provide evidence that four mapped loci in chromosomes 2, 4, and 16 influence hypertension in the SHR

    No full text
    Aneas I, Rodrigues MV, Pauletti BA, Silva GJ, Carmona R, Cardoso L, Kwitek AE, Jacob HJ, Soler JM, Krieger JE. Congenic strains provide evidence that four mapped loci in chromosomes 2, 4, and 16 influence hypertension in the SHR. Physiol Genomics 37: 52-57, 2009. First published January 6, 2009; doi: 10.1152/physiolgenomics.90299.2008. - To dissect the genetic architecture controlling blood pressure (BP) regulation in the spontaneously hypertensive rat (SHR) we derived congenic rat strains for four previously mapped BP quantitative trait loci (QTLs) in chromosomes 2, 4, and 16. Target chromosomal regions from the Brown Norway rat (BN) averaging 13 - 29 cM were introgressed by marker-assisted breeding onto the SHR genome in 12 or 13 generations. Under normal salt intake, QTLs on chromosomes 2a, 2c, and 4 were associated with significant changes in systolic BP (13, 20, and 15 mmHg, respectively), whereas the QTL on chromosome 16 had no measurable effect. On high salt intake (1% NaCl in drinking water for 2 wk), the chromosome 16 QTL had a marked impact on SBP, as did the QTLs on chromosome 2a and 2c (18, 17, and 19 mmHg, respectively), but not the QTL on chromosome 4. Thus these four QTLs affected BP phenotypes differently: 1) in the presence of high salt intake (chromosome 16), 2) only associated with normal salt intake (chromosome 4), and 3) regardless of salt intake (chromosome 2c and 2a). Moreover, salt sensitivity was abrogated in congenics SHR. BN2a and SHR. BN16. Finally, we provide evidence for the influence of genetic background on the expression of the mapped QTLs individually or as a group. Collectively, these data reveal previously unsuspected nuances of the physiological roles of each of the four mapped BP QTLs in the SHR under basal and/or salt loading conditions unforeseen by the analysis of the F2 cross

    Novel processed form of syndecan-1 shed from SCC-9 cells plays a role in cell migration.

    Get PDF
    The extracellular milieu is comprised in part by products of cellular secretion and cell surface shedding. The presence of such molecules of the sheddome and secretome in the context of the extracellular milieu may have important clinical implications. In cancer they have been hypothesized to play a role in tumor growth and metastasis. The objective of this study was to evaluate whether the sheddome/secretome from two cell lines could be correlated with their potential for tumor development. Two epithelial cell lines, HaCaT and SCC-9, were chosen based on their differing abilities to form tumors in animal models of tumorigenesis. These cell lines when stimulated with phorbol-ester (PMA) showed different characteristics as assessed by cell migration, adhesion and higher gelatinase activity. Proteomic analysis of the media from these treated cells identified interesting, functionally relevant differences in their sheddome/secretome. Among the shed proteins, soluble syndecan-1 was found only in media from stimulated tumorigenic cells (SCC-9) and its fragments were observed in higher amount in the stimulated tumorigenic cells than stimulated non-tumorigenic cells (HaCaT). The increase in soluble syndecan-1 was associated with a decrease in membrane-bound syndecan-1 of SCC-9 cells after PMA stimuli. To support a functional role for soluble syndecan-1 fragments we demonstrated that the synthetic syndecan-1 peptide was able to induce cell migration in both cell lines. Taken together, these results suggested that PMA stimulation alters the sheddome/secretome of the tumorigenic cell line SCC-9 and one such component, the syndecan-1 peptide identified in this study, was revealed to promote migration in these epithelial cell lines

    Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer

    Get PDF
    Different regions of oral squamous cell carcinoma (OSCC) have particular histopathological and molecular characteristics limiting the standard tumor-node-metastasis prognosis classification. Therefore, defining biological signatures that allow assessing the prognostic outcomes for OSCC patients would be of great clinical significance. Using histopathology-guided discovery proteomics, we analyze neoplastic islands and stroma from the invasive tumor front (ITF) and inner tumor to identify differentially expressed proteins. Potential signature proteins are prioritized and further investigated by immunohistochemistry (IHC) and targeted proteomics. IHC indicates low expression of cystatin-B in neoplastic islands from the ITF as an independent marker for local recurrence. Targeted proteomics analysis of the prioritized proteins in saliva, combined with machine-learning methods, highlights a peptide-based signature as the most powerful predictor to distinguish patients with and without lymph node metastasis. In summary, we identify a robust signature, which may enhance prognostic decisions in OSCC and better guide treatment to reduce tumor recurrence or lymph node metastasis.Peer reviewe

    Thioredoxin-1 Negatively Modulates ADAM17 Activity Through Direct Binding and Indirect Reductive Activity

    No full text
    Aims: A disintegrin and metalloprotease 17 (ADAM17) modulates signaling events by releasing surface protein ectodomains such as TNFa and the EGFR-ligands. We have previously characterized cytoplasmic thioredoxin-1 (Trx-1) as a partner of ADAM17 cytoplasmic domain. Still, the mechanism of ADAM17 regulation by Trx-1 is unknown, and it has become of paramount importance to assess the degree of influence that Trx-1 has on metalloproteinase ADAM17. Results: Combining discovery and targeted proteomic approaches, we uncovered that Trx-1 negatively regulates ADAM17 by direct and indirect effect. We performed cell-based assays with synthetic peptides and site-directed mutagenesis, and we demonstrated that the interaction interface of Trx-1 and ADAM17 is important for the negative regulation of ADAM17 activity. However, both Trx-1(K72A) and catalytic site mutant Trx-1(C32/35S) rescued ADAM17 activity, although the interaction with Trx-1(C32/35S) was unaffected, suggesting an indirect effect of Trx-1. We confirmed that the Trx-1(C32/35S) mutant showed diminished reductive capacity, explaining this indirect effect on increasing ADAM17 activity through oxidant levels. Interestingly, Trx-1(K72A) mutant showed similar oxidant levels to Trx-1(C32/35S), even though its catalytic site was preserved. We further demonstrated that the general reactive oxygen species inhibitor, Nacetylcysteine (NAC), maintained the regulation of ADAM17 dependent of Trx-1 reductase activity levels; whereas the electron transport chain modulator, rotenone, abolished Trx-1 effect on ADAM17 activity. Innovation: We show for the first time that the mechanism of ADAM17 regulation, Trx-1 dependent, can be by direct interaction and indirect effect, bringing new insights into the cross-talk between isomerases and mammalian metalloproteinases. Conclusion: This unexpected Trx-1(K72A) behavior was due to more dimer formation and, consequently, the reduction of its Trx-1 reductase activity, evaluated through dimer verification, by gel filtration and mass spectrometry analysis
    corecore