100 research outputs found

    Development of a HgCdTe photomixer and impedance matched GaAs FET amplifier

    Get PDF
    A research program for the development of a 10.6 micron HgCdTe photodiode/GaAs field effect transistor amplifier package for use at cryogenic temperatures (77k). The photodiode/amplifier module achieved a noise equivalent power per unit bandwidth of 5.7 times 10 to the 20th power W/Hz at 2.0 GHz. The heterodyne sensitivity of the HgCdTe photodiode was improved by designing and building a low noise GaAs field effect transistor amplifier operating at 77K. The Johnson noise of the amplifier was reduced at 77K, and thus resulted in an increased photodiode heterodyne sensitivity

    Development of the (d,n) proton-transfer reaction in inverse kinematics for structure studies

    Get PDF
    Transfer reactions have provided exciting opportunities to study the structure of exotic nuclei and are often used to inform studies relating to nucleosynthesis and applications. In order to benefit from these reactions and their application to rare ion beams (RIBs) it is necessary to develop the tools and techniques to perform and analyze the data from reactions performed in inverse kinematics, that is with targets of light nuclei and heavier beams. We are continuing to expand the transfer reaction toolbox in preparation for the next generation of facilities, such as the Facility for Rare Ion Beams (FRIB), which is scheduled for completion in 2022. An important step in this process is to perform the (d,n) reaction in inverse kinematics, with analyses that include Q-value spectra and differential cross sections. In this way, proton-transfer reactions can be placed on the same level as the more commonly used neutron-transfer reactions, such as (d,p), (9Be,8Be), and (13C,12C). Here we present an overview of the techniques used in (d,p) and (d,n), and some recent data from (d,n) reactions in inverse kinematics using stable beams of 12C and 16O.Comment: 9 pages, 4 figures, presented at the XXXV Mazurian Lakes Conference on Physics, Piaski, Polan

    β -decay study of Kr 94

    Get PDF
    β decay of neutron-rich nuclide Kr94 was reinvestigated by means of a high resolution on-line mass separator and β-γ spectroscopy. In total 22 γ-ray transitions were assigned to the decay of Kr94, and a new isomeric state was identified. The new information allows us to build detailed levels systematics in a chain of odd-odd rubidium isotopes and draw conclusions on nuclear structure for some of the observed states. The discussed level structure affects the evolution of β-decay half-lives for neutron-rich selenium, krypton, and strontium isotopes

    Impact of Modular Total Absorption Spectrometer measurements of β decay of fission products on the decay heat and reactor ν e flux calculation

    Get PDF
    We report the results of a β-decay study of fission products Br86, Kr89, Rb89, Rb90gs, Rb90m, Kr90, Rb92, Xe139, and Cs142 performed with the Modular Total Absorption Spectrometer (MTAS) and on-line mass-separated ion beams. These radioactivities were assessed by the Nuclear Energy Agency as having high priority for decay heat analysis during a nuclear fuel cycle. We observe a substantial increase in β feeding to high excited states in all daughter isotopes in comparison to earlier data. This increases the average γ-ray energy emitted by the decay of fission fragments during the first 10 000 s after fission of U235 and Pu239 by approximately 2% and 1%, respectively, improving agreement between results of calculations and direct observations. New MTAS results reduce the reference reactor νe flux used to analyze reactor νe interaction with detector matter. The reduction determined by the ab initio method for the four nuclear fuel components, U235, U238, Pu239, and Pu241, amounts to 0.976, 0.986, 0.983, and 0.984, respectively

    Systematics of low energy collective states in neutron-rich Cd isotopes

    Get PDF
    It has been shown that there are significant deviations from the expected U(5) dynamical symmetry for 110,112,114,116Cd. However, there is very significant mixing with intruder states in this region. In this paper, we investigated states in the heavier 120,124,126Cd populated via beta decay. These nuclei exhibit similar patterns to the lighter Cd isotopes even though the intruder states are much higher in energy. © Published under licence by IOP Publishing Ltd

    β -delayed neutron emission from Ga 85

    Get PDF
    Decay of Ga85 was studied by means of β-neutron-γ spectroscopy. A pure beam of Ga85 was produced at the Holifield Radioactive Ion Beam Facility using a resonance ionization laser ion source and a high-resolution electromagnetic separator. The β-delayed neutron emission probability was measured for the first time, yielding 70(5)%. An upper limit of 0.1% for β-delayed two-neutron emission was also experimentally established for the first time. A detailed decay scheme including absolute γ-ray intensities was obtained. Results are compared with theoretical β-delayed emission models

    Excited states in As 82 studied in the decay of Ge 82

    Get PDF
    The excited states of odd-odd As82 are studied in the β decay of Ge82. An isotopically pure beam of Ga83 was produced at the Holifield Radioactive Ion Beam Facility using a resonance ionization laser ion source and high-resolution electromagnetic separation. The atoms of Ge82 are created after β-delayed neutron emission in the decay of Ga83. The number of Ge82 atoms is found by normalization to the 1348-keV γ ray. Detailed analysis of the decay scheme is compared with shell-model calculations with several commonly used fpg shell interactions
    corecore