10 research outputs found

    Design and conduct of 'Xtreme Alps' : a double-blind, randomised controlled study of the effects of dietary nitrate supplementation on acclimatisation to high altitude

    Get PDF
    The study of healthy human volunteers ascending to high altitude provides a robust model of the complex physiological interplay that emulates human adaptation to hypoxaemia in clinical conditions. Nitric oxide (NO) metabolism may play an important role in both adaptation to high altitude and response to hypoxaemia during critical illness at sea level. Circulating nitrate and nitrite concentrations can be augmented by dietary supplementation and this is associated with improved exercise performance and mitochondrial efficiency. We hypothesised that the administration of a dietary substance (beetroot juice) rich in nitrate would improve oxygen efficiency during exercise at high altitude by enhancing tissue microcirculatory blood flow and oxygenation. Furthermore, nitrate supplementation would lead to measurable increases in NO bioactivity throughout the body. This methodological manuscript describes the design and conduct of the ‘Xtreme Alps’ expedition, a double-blind randomised controlled trial investigating the effects of dietary nitrate supplementation on acclimatisation to hypobaric hypoxia at high altitude in healthy human volunteers. The primary outcome measure was the change in oxygen efficiency during exercise at high altitude between participants allocated to receive nitrate supplementation and those receiving a placebo. A number of secondary measures were recorded, including exercise capacity, peripheral and microcirculatory blood flow and tissue oxygenation. Results from this study will further elucidate the role of NO in adaption to hypoxaemia and guide clinical trials in critically ill patients. Improved understanding of hypoxaemia in critical illness may provide new therapeutic avenues for interventions that will improve survival in critically ill patients

    Cardiopulmonary exercise testing for the evaluation of perioperative risk in non-cardiopulmonary surgery

    No full text
    The use of cardiopulmonary exercise testing (CPET) as a preoperative risk stratification tool for a range of non-cardiopulmonary surgery is increasing. The utility of CPET in this role is dependent on the technology being able to identify accurately and reliably those patients at increased risk of perioperative events when compared with existing risk stratification tools. This article identifies and reviews systematically the current literature regarding the use of CPET as a preoperative tool for stratifying risk in major non-cardiopulmonary surgery. Specifically, it focuses on evaluating the capacity of CPET variables to predict the risk of postoperative complications and mortality in comparison to other methods of risk assessment. Furthermore, the potential for combining results from CPET and non-CPET methods of risk prediction to enhance the capacity to identify high risk patients is considered. The review indicates that CPET can identify patients at increased risk of adverse perioperative outcomes. However, the selection of variables and threshold values to indicate high risk differ for different surgical procedures and underlying conditions. Furthermore, the available data suggest that CPET variables outperform alternative methods of preoperative risk stratification. Several studies also identify that CPET variables may be used in combination with non-CPET variables to increase perioperative risk prediction accuracy. These findings illustrate that CPET has the capacity to identify patients at increased risk of adverse outcome before a range of non-cardiopulmonary surgical procedures. Further research is required to optimise its use, potentially by combining CPET results with alternative methods of risk stratification

    Saccharomyces cerevisiae fermentation products (SCFP) stabilize the ruminal microbiota of lactating dairy cows during periods of a depressed rumen pH

    No full text
    Background: Effects of Saccharomyces cerevisiae fermentation products (SCFP) on rumen microbiota were determined in vitro and in vivo under a high and a depressed pH. The in vitro trial determined the effects of Original XPC and NutriTek (Diamond V, Cedar Rapids, IA) at doses of 1.67 and 2.33 g/L, respectively, on the abundances of rumen bacteria under a high pH (> 6.3) and a depressed pH (5.8-6.0) using quantitative PCR (qPCR). In the in vivo trial eight rumen-cannulated lactating dairy cows were used in a cross-over design. Cows were randomly assigned to SCFP treatments (Original XPC, Diamond V, Cedar Rapids, IA) or control (No SCFP) before two 5-week experimental periods. During the second period, SCFP treatments were reversed. Cows on the SCFP treatment were supplemented with 14 g/d of SCFP and 126 g/d of ground corn. Other cows received 140 g/d ground corn. During the first 4 wk. of each period, cows received a basal diet containing 153 g/kg of starch. During week 5 of both periods, the rumen pH was depressed by a SARA challenge. This included replacing 208 g/kg of the basal diet with pellets of ground wheat and barley, resulting in a diet that contained 222 g/kg DM of starch. Microbial communities in rumen liquid digesta were examined by pyrosequencing, qPCR, and shotgun metagenomics. Results: During the in vitro experiment, XPC and NutriTek increased the relative abundances of Ruminococcus flavefaciens, and Fibrobacter succinogenes determined at both the high and the depressed pH, with NutriTek having the largest effect. The relative abundances of Prevotella brevis, R. flavefaciens, ciliate protozoa, and Bifidobacterium spp. were increased by XPC in vivo. Adverse impacts of the in vivo SARA challenge included reductions of the richness and diversity of the rumen microbial community, the abundances of Bacteroidetes and ciliate protozoa in the rumen as determined by pyrosequencing, and the predicted functionality of rumen microbiota as determined by shotgun metagenomics. These reductions were attenuated by XPC supplementation. Conclusions: The negative effects of grain-based SARA challenges on the composition and predicted functionality of rumen microbiota are attenuated by supplementation with SCFP

    Design and conduct of 'Xtreme Alps': A double-blind, randomised controlled study of the effects of dietary nitrate supplementation on acclimatisation to high altitude ☆

    No full text
    The study of healthy human volunteers ascending to high altitude provides a robust model of the complex physiological interplay that emulates human adaptation to hypoxaemia in clinical conditions. Nitric oxide (NO) metabolism may play an important role in both adaptation to high altitude and response to hypoxaemia during critical illness at sea level. Circulating nitrate and nitrite concentrations can be augmented by dietary supplementation and this is associated with improved exercise performance and mitochondrial efficiency. We hypothesised that the administration of a dietary substance (beetroot juice) rich in nitrate would improve oxygen efficiency during exercise at high altitude by enhancing tissue microcirculatory blood flow and oxygenation. Furthermore, nitrate supplementation would lead to measurable increases in NO bioactivity throughout the body. This methodological manuscript describes the design and conduct of the 'Xtreme Alps' expedition, a double-blind randomised controlled trial investigating the effects of dietary nitrate supplementation on acclimatisation to hypobaric hypoxia at high altitude in healthy human volunteers. The primary outcome measure was the change in oxygen efficiency during exercise at high altitude between participants allocated to receive nitrate supplementation and those receiving a placebo. A number of secondary measures were recorded, including exercise capacity, peripheral and microcirculatory blood flow and tissue oxygenation. Results from this study will further elucidate the role of NO in adaption to hypoxaemia and guide clinical trials in critically ill patients. Improved understanding of hypoxaemia in critical illness may provide new therapeutic avenues for interventions that will improve survival in critically ill patients

    Intraoperative transfusion practices and perioperative outcome in the European elderly: A secondary analysis of the observational ETPOS study

    No full text
    The demographic development suggests a dramatic growth in the number of elderly patients undergoing surgery in Europe. Most red blood cell transfusions (RBCT) are administered to older people, but little is known about perioperative transfusion practices in this population. In this secondary analysis of the prospective observational multicentre European Transfusion Practice and Outcome Study (ETPOS), we specifically evaluated intraoperative transfusion practices and the related outcomes of 3149 patients aged 65 years and older. Enrolled patients underwent elective surgery in 123 European hospitals, received at least one RBCT intraoperatively and were followed up for 30 days maximum. The mean haemoglobin value at the beginning of surgery was 108 (21) g/l, 84 (15) g/l before transfusion and 101 (16) g/l at the end of surgery. A median of 2 [1–2] units of RBCT were administered. Mostly, more than one transfusion trigger was present, with physiological triggers being preeminent. We revealed a descriptive association between each intraoperatively administered RBCT and mortality and discharge respectively, within the first 10 postoperative days but not thereafter. In our unadjusted model the hazard ratio (HR) for mortality was 1.11 (95% CI: 1.08–1.15) and the HR for discharge was 0.78 (95% CI: 0.74–0.83). After adjustment for several variables, such as age, preoperative haemoglobin and blood loss, the HR for mortality was 1.10 (95% CI: 1.05–1.15) and HR for discharge was 0.82 (95% CI: 0.78–0.87). Preoperative anaemia in European elderly surgical patients is undertreated. Various triggers seem to support the decision for RBCT. A closer monitoring of elderly patients receiving intraoperative RBCT for the first 10 postoperative days might be justifiable. Further research on the causal relationship between RBCT and outcomes and on optimal transfusion strategies in the elderly population is warranted. A thorough analysis of different time periods within the first 30 postoperative days is recommended

    Intraoperative transfusion practices in Europe

    No full text
    © 2016 The Author. Published by Oxford University Press on behalf of the British Journal of Anaesthesia.Background: Transfusion of allogeneic blood influences outcome after surgery. Despite widespread availability of transfusion guidelines, transfusion practices might vary among physicians, departments, hospitals and countries. Our aim was to determine the amount of packed red blood cells (pRBC) and blood products transfused intraoperatively, and to describe factors determining transfusion throughout Europe. Methods: We did a prospective observational cohort study enrolling 5803 patients in 126 European centres that received at least one pRBC unit intraoperatively, during a continuous three month period in 2013. Results: The overall intraoperative transfusion rate was 1.8%; 59% of transfusions were at least partially initiated as a result of a physiological transfusion trigger- mostly because of hypotension (55.4%) and/or tachycardia (30.7%). Haemoglobin (Hb)- based transfusion trigger alone initiated only 8.5% of transfusions. The Hb concentration [mean (sd)] just before transfusion was 8.1 (1.7) g dl-1 and increased to 9.8 (1.8) g dl-1 after transfusion. The mean number of intraoperatively transfused pRBC units was 2.5 (2.7) units (median 2). Conclusions: Although European Society of Anaesthesiology transfusion guidelines are moderately implemented in Europe with respect to Hb threshold for transfusion (7-9 g dl-1), there is still an urgent need for further educational efforts that focus on the number of pRBC units to be transfused at this threshold
    corecore