18 research outputs found

    Impact of congenital calcitonin deficiency due to dysgenetic hypothyroidism on bone mineral density

    No full text
    The objective of the present study was to determine the effect of chronic calcitonin deficiency on bone mass development. The results of 11 patients with thyroid dysgenesis (TD) were compared to those of 17 normal individuals (C) and of 9 patients with other forms of hypothyroidism (OH): 4 with hypothyroidism due to inborn errors of thyroid hormone synthesis and 5 with Hashimoto's thyroiditis. The subjects received an intravenous calcium stimulus and blood was collected for the determination of ionized calcium (Ca2+), calcitonin, and intact parathyroid hormone. Bone mineral density (BMD) was determined by dual-energy X-ray absorptiometry. After calcium administration the levels of Ca2+ in the two groups of hypothyroidism were significantly higher than in the normal control group (10 min after starting calcium infusion: C = 1.29 ± 0.08 vs TD = 1.34 ± 0.03 vs OH = 1.34 ± 0.02 mmol/l; P < 0.05), and only the TD group showed no calcitonin response (5 min after starting calcium infusion: C = 27.9 ± 5.8 vs TD = 6.6 ± 0.3 vs OH = 43.0 ± 13.4 ng/l). BMD values did not differ significantly between groups (L2-L4: C = 1.116 ± 0.02 vs TD = 1.109 ± 0.03 vs OH = 1.050 ± 0.04 g/cm²). These results indicate that early deficiency of calcitonin secretion has no detrimental effect on bone mass development. Furthermore, the increased calcitonin secretion observed in patients with inborn errors of thyroid hormone biosynthesis does not confer any advantage in terms of BMD

    Impact of congenital calcitonin deficiency due to dysgenetic hypothyroidism on bone mineral density

    No full text
    The objective of the present study was to determine the effect of chronic calcitonin deficiency on bone mass development. The results of 11 patients with thyroid dysgenesis (TD) were compared to those of 17 normal individuals (C) and of 9 patients with other forms of hypothyroidism (OH): 4 with hypothyroidism due to inborn errors of thyroid hormone synthesis and 5 with Hashimoto's thyroiditis. The subjects received an intravenous calcium stimulus and blood was collected for the determination of ionized calcium (Ca2+), calcitonin, and intact parathyroid hormone. Bone mineral density (BMD) was determined by dual-energy X-ray absorptiometry. After calcium administration the levels of Ca2+ in the two groups of hypothyroidism were significantly higher than in the normal control group (10 min after starting calcium infusion: C = 1.29 ± 0.08 vs TD = 1.34 ± 0.03 vs OH = 1.34 ± 0.02 mmol/l; P < 0.05), and only the TD group showed no calcitonin response (5 min after starting calcium infusion: C = 27.9 ± 5.8 vs TD = 6.6 ± 0.3 vs OH = 43.0 ± 13.4 ng/l). BMD values did not differ significantly between groups (L2-L4: C = 1.116 ± 0.02 vs TD = 1.109 ± 0.03 vs OH = 1.050 ± 0.04 g/cm²). These results indicate that early deficiency of calcitonin secretion has no detrimental effect on bone mass development. Furthermore, the increased calcitonin secretion observed in patients with inborn errors of thyroid hormone biosynthesis does not confer any advantage in terms of BMD

    Antinociceptive Activity Of Ipomoea Imperati (vahl) Griseb., Convolvulaceae [atividade Antinociceptiva De Ipomoea Imperati (vahl) Griseb., Convolvulaceae]

    No full text
    Ipomoea imperati (Vahl) Griseb., Convolvulaceae, is used in folk medicine for the treatment of inflammation, swelling and wounds, as well as to treat pains after childbirth and for stomach problems. Administration of ethanol extract, lipid and aqueous fraction of I. imperati (300, 100 and 200 mg/kg) significantly inhibited the abdominal constriction in mice induced by acetic acid; increased the sleeping time evoked by pentobarbital sodium and showed a significant activity by inhibiting formalin-induced paw edema in mice. The same dose of I. imperati also raised the pain of mice in the hot-plate test and increased the latency at all observation times. The pre-treatment of the animals with naloxone (5 mg/kg, i.p.) suggested the participation of the opioid system in the antinociceptive effect of Ipomoea imperati.202180185Amanlou, M., Dadkhah, F., Salehnia, A., Farsam, H., An anti-inflammatory and anti-nociceptive effects of hydroalcoholic extract of Satureja khuzistanica Jamzad extract (2005) J Pharm Pharm Sci, 8, pp. 102-106Austin, D.F., Flora of Panama (1975) Ann Mo Bot Gard, 62, pp. 198-201Collier, H.O., Dinneen, L.C., Johnson, C.A., Schneider, C., The abdominal constriction response and its suppression by analgesic drugs in the mouse (1968) Brit J Pharmacol Chemother, 32, pp. 295-310Costa-Lotufo, L.V., de Lucena, D.F., Andrade Neto, M., Bezerra, J.N.S., Leal, L.K.A.M., de Sousa, F.C.F., Viana, G.S., Analgesic, anti-inflammatory and central depressor effects of the hydroalcoholic extract and fractions from Aeolanthus suaveolens (2004) Biol Pharm Bull, 27, pp. 821-824di Rosa, M., Giroud, J.P., Willoughby, D.A., Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine (1971) J Pathol, 104, pp. 15-29Duarte, I.D.G., Nakamura, M., Ferreira, S.H., Participation of the sympathetic system in acetic acid-induced writhing in mice (1988) Braz J Med Biol Res, 21, pp. 341-343Eddy, N.B., Leimback, D.J., Synthetic analgesics. II. Dithienylbutenyl and dithienylbutylamines (1953) J Pharmacol Exp Ther, 107, pp. 385-393Ferreira, S.H., Moncada, S., Vane, J.R., The blockade of the local generation of prostaglandins explains the analgesic action of aspirin (1973) Agents Actions, 3, p. 385Ferreira, A.A., Amaral, F.A., Duarte, I.D.G., Oliveira, P.M., Alves, R.B., Silveira, D., Azevedo, A.O., Castro, M.S.A., Antinociceptive effect from Ipomoea cairica extract (2006) J Ethnopharmacol, 105, pp. 148-153Fosberg, F.R., Sachet, M.H., Flora of Micronesia. 3. Convolvulaceae (1977) Contrib Bot, 36, pp. 1-34Gracioso, J.S., Paulo, M.Q., Hiruma-Lima, C.A., Souza Brito, A.R.M., Antinociceptive effect in mice of a hydroalcoholic extract of Neurolaena lobata (L.) R. Br. and its organic fractions (1998) J Pharma Pharmacol, 50, pp. 1425-1429Henriques, M.G.M.O., Silva, P.M.R., Martins, M.A., Flores, C.A., Cunha, F.Q., Assreuy-Filho, J., Cordeiro, R.S.B., Mouse paw edema. A new model for inflammation (1987) Braz J Med Biol Res, 20, pp. 243-249Hiruma-Lima, C.A., Gracioso, J.S., Bighetti, E.J.B., Germonsén Robineou, L., Souza Brito, A.R.M., The juice of fresh leaves of Boerhaavia diffusa L. (Nyctaginaceae) markedly reduces pain in mice (2000) J Ethnopharmacol, 71, pp. 267-274Jansen, P.A.J., Niememegeers, C.J.E., Dony, G.H., The inhibitory effect of fentanyl and other morphine-like analgesics on the warm water induced tail withdrawl reflex in rats (1963) Arzneimittel-Forsch, 13, pp. 502-507Koster, R., Anderson, M., de Beer, E.J., Acetic acid for analgesic screening (1959) Fed Proc, 18, pp. 412-418le Bars, D., Gozariu, M., Cadden, S.W., Animal models of nociception (2001) Pharmacol Rev, 53, pp. 597-652Ma, Y., Han, H., Eun, J.S., Kim, H.C., Hong, J.T., Oh, K.W., Sanjoinine A isolated from Zizyphi Spinosi Semen augments pentobarbital-induced sleeping behaviors through the modification of Gabaergic system (2007) Biol Pharm Bull, 30, pp. 1748-1753Macleod, J.K., Ward, A., Oelrichs, P.B., Structural investigation of resin glycosides from Ipomoea lonchophylla (1997) J Nat Prod, 60, pp. 467-471Noda, N., Takahashi, N., Kawasaki, T., Miyahara, K., Yang, C.R., Stoloniferins I-VII, resin glycosides from Ipomoea stolonifera (1994) Phytochemistry, 36, pp. 365-371Olfert, E.D., Cross, B.M., McWillian, A.A., (1993) Guide to The Care and Use of Experimental Animals, pp. 1-213. , Canadian council on animal care co., OntarioPan, Y.X., Xu, J., Bolan, E., Abbadie, C., Chang, A., Zuckeman, A., Rossi, G., Pasternak, G.W., Identification and characterization of three new alternatively spliced muopioid receptor isoforms (1999) Mol Pharmacol, 56, pp. 396-403Paula, A.C.B., Hayashi, L.S.S., Freitas, J.C., Anti-inflammatory and antispasmodic activity of Ipomoea imperati (Vahl) Griseb (Convolvulaceae) (2003) Braz J Med Biol Res, 36, pp. 105-112Pieretti, S., di Giannuario, A., Loizzo, A., Sagratella, S., Scotti de Carolis, A., Capasso, A., Sorrentino, L., Dexamethasone prevents epileptiform activity induced by morphine in vivo and in vitro experiments (1992) J Pharmacol Exp Ther, 263, pp. 830-839Pongprayoon, U., Bohlin, L., Soonthornsaratune, P., Wasuwat, S., Anti-inflammatory activity of Ipomoea pescaprae (L.) R (1991) Br. Phytother Res, 5, pp. 63-66Pongprayoon, U., Baeckstrom, P., Jacobsson, U., Lindstrom, M., Bohlin, L., Compounds inhibiting prostaglandin synthesis isolated from Ipomoea pes caprae (1991) Planta Med, 57, pp. 515-517Pongprayoon, U., Baeckstrom, P., Jacobsson, U., Lindstrom, M., Bohlin, L., Antispasmodic activity of beta-damascenone and E-phytol isolated from Ipomoea pes-caprae (1992) Planta Med, 58, pp. 19-21Shibata, M., Ohkubo, T., Takahashi Hiroki, R., Modified formalin test: Characteristic biphasic pain response (1989) Pain, 38, pp. 347-352Souza, M.M., Madeira, A., Berti, C., Krogh, R., Yunes, R.A., Cechinel, V.J., Antinociceptive properties of the methanolic extract obtained from Ipomoea pes-caprae (L.) R (2000) Br. J Ethnopharmacol, 69, pp. 85-90Trentin, A.P., Santos, A.R.S., Miguel, O.G., Pizzolatti, M.G., Yunes, R.A., Calixto, J.B., Mechanisms involved in the antinociceptive effect in mice of the hydroalcoholic extract of Siphocampylus verticillatus (1997) J Pharm Pharmacol, 49, pp. 567-572Woolfe, G., Macdonald, A.D., The evaluation of the analgesic action of pethidine hydrochloride (demerol) (1944) J Pharmacol Exp Ther, 80, pp. 300-307Zimmerman, M., Ethical guidelines for investigations of experimental pain in conscious animals (1983) Pain, 16, pp. 109-11

    Natural Trans-crotonin: The Antiulcerogenic Effect Of Another Diterpene Isolated From The Bark Of Croton Cajucara Benth

    No full text
    The nor-clerodane diterpene trans-crotonin isolated from the bark of Croton cajucara BENTH. was investigated for its ability to prevent the formation of gastric-mucosa ulceration in different experimental models in mice. The results obtained from crotonin were compared with those obtained with another diterpene, DHC (trans-dehydrocrotonin) in the same models. When previously administered (p.o.) at the dose of 100 mg/kg, crotonin, as well as DHC, significantly reduced (p0.05). The results suggest that crotonin presents a significant anti-ulcer effect when assessed in these ulcer-induced models. As with DHC, the antiulcerogenic effects of crotonin are probably related to anti-secretory or/and gastroprotective properties of this substance. In light of results obtained with DHC and natural trans-crotonin in the present study, we concluded that the A-ring of both diterpenes is not directly involved in the antiulcerogenic activity.254452456Di Stasi, L.C., Santos, E.M.C., Moreira Dos Santos, C., Hiruma, C.A., (1989) Plantas Medicinais Da Amazônia, pp. 127-128. , Editora UNESP, São PauloSouza Brito, A.R.M., Nunes, D.S., (1997) Ciência e Cultura, 49, pp. 402-408Souza Brito, A.R.M., Rodríguez, J.A., Hiruma-Lima, C.A., Haun, M., Nunes, D.S., (1998) Planta Med., 64, pp. 126-129Hiruma-Lima, C.A., Spadari-Bratfisch, R.C., Grassi Kassisse, D.M., Souza Brito, A.R.M., (1999) Planta Med., 65, pp. 325-330Rodriguez, J.A., Haun, M., (1999) Pharmacology and Taxicology, 65, pp. 1-5Hiruma-Lima, C.A., Gracioso, J.S., Toma, W., Almeida, A.B.A., Paula, A.C.B., Brasil, D.S.B., Muller, A.H., Souza Brito, A.R.M., (2001) Phytomedicine, 8, pp. 94-100Hiruma-Lima, C.A., Gracioso, J.S., Toma, W., Paula, A.C.B., Almeida, A.B.A., Brasil, D.S.B., Muller, A.H., Souza Brito, A.R.M., (2000) Biol. Pharm. Bull., 23, pp. 1465-1469Olfert, E.D., Cross, B.M., McWilliam, A.A., (1993) Canadian Council on Animal Care, 1, pp. 1-213. , Ottawa, OntarioItokawa, H., Ichihara, Y., Kojima, H., Watanabe, K., Takeya, K., (1989) Phytochemistry, 28, pp. 1667-1669Mizui, T., Doteuchi, M., (1983) Jpn. J. Pharmacol., 33, pp. 939-945Szelenyi, I., Thiemer, K., (1978) Arch. Toxicol., 41, pp. 99-105Rainsford, K.D., (1978) J. Pharm. Pharmacol., 39, pp. 669-672Levine, R.J., (1971) Peptic Ulcer, pp. 92-97. , ed. by Pfeiffer, C. J., Munksgaard, CopenhagenShay, H., Komarov, S.A., Fels, S.S., Meranze, D., Gruenstein, M., Siplet, H., (1945) Gastroenterol., 5, pp. 43-61Bolton, J.P., Palmer, D., Cohen, M., (1978) Digest. Diseases, 23, pp. 359-364Sun, S.B., Matsumoto, T., Yamada, H., (1991) J. Pharm. Pharmacol., 43, pp. 699-704Wallace, J.L., Granger, D.N., (1996) FASEB J., 10, pp. 731-740Weir, D.G., (1988) Br. Med. J., 296, pp. 195-200Lewis, D.A., Hanson, P.J., (1991) Progress in Medicinal Chemistry, pp. 201-231. , ed. by Ellis G. P., West G. B., Elsevier Science Publishers, AmsterdamAlkofahi, A., Atta, A.H., (1999) J. Ethnopharmacology, 67, pp. 341-345Kitazawa, E., Sato, A., Takahashi, H., Kuwano, H., Ogiso, A., (1980) Chem. Pharm. Bull., 28, pp. 227-234Desai, J.K., Parmar, N.S., (1994) Agents Actions, 42, pp. 149-152Sarosiek, J., Slomiany, B.L., Kojima, K., Swierczec, J., Slomiany, A., Konturek, S.J., (1984) J. Appl. Biochem., 5, pp. 429-436Guth, P.H., Paulsen, G., Nagata, H., (1984) Gastroenterol., 87, pp. 1083-1090Szabo, S., (1987) Scand. J. Gastroenterol., 22, pp. 21-28Parnaham, M.J., Brune, K., (1987) Agents Actions, 21, pp. 232-234Murakami, M., Lam, S.K., Inada, M., Miyake, T., (1985) Gastroenterol., 88, pp. 660-665Kitagawa, H., Fujiwara, M., Osumi, Y., (1979) Gastroenterol., 77, pp. 298-302Koo, M.W.L., Ogle, C.W., Cho, C.H., (1986) Pharmacology, 32, pp. 326-334Sato, N., Kawano, S., Tsuji, S., Ogihara, T., Yamada, S., (1995) Scand. J. Gastroenterol., 30, pp. 14-20Whittle, B.J., (1981) Gastroenterol., 80, pp. 94-98Droy-Lefaix, M.T., (1988) Prostaglandins: Biology and Chemistry of Prostaglandins and Related Eicosanoids, pp. 345-360. , ed. by Curtis-Prior P. B., Churchill Livingtone, New YorkWallace, J.L., Whittle, B.J., (1985) Eur. J. Pharmacol., 115, pp. 45-51Bilski, J., Sarosiek, J., Murty, V.L.N., Aono, M., Moriga, M., Slomiany, A., Slomiany, B.L., (1987) Biochem. Pharmacol., 36, pp. 4059-4065Hiruma-Lima, C.A., Gracioso, J.S., Nunes, D.S., Souza Brito, A.R.M., (1999) J. Pharm. Pharmacol., 51, pp. 341-34
    corecore