12 research outputs found

    Enhanced Semiconductor Nanocrystal Conductance via Solution Grown Contacts

    Get PDF
    We report a 100,000-fold increase in the conductance of individual CdSe nanorods when they are electrically contacted via direct solution phase growth of Au tips on the nanorod ends. Ensemble UV-Vis and X-Ray photoelectron spectroscopy indicate this enhancement does not result from alloying of the nanorod. Rather, low temperature tunneling and high temperature (250-400 K) thermionic emission across the junction at the Au contact reveal a 75percent lower interface barrier to conduction compared to a control sample. We correlate this barrier lowering with the electronic structure at the Au-CdSe interface. Our results emphasize the importance of nanocrystal surface structure for robust device performance and the advantage of this contact method

    Electrical Contacts to Individual Colloidal Semiconductor Nanorods

    No full text

    Influence of linker molecules on charge transport through self-assembled single-nanoparticle devices

    No full text
    We investigate electrical characteristics of single-electron electrode/nanoisland/electrode devices formed by alkanedithiol assisted self-assembly. Contrary to predictions of the orthodox model for double tunnel junction devices, we find a significant (∼fivefold) discrepancy in single-electron charging energies determined by Coulomb blockade (CB) voltage thresholds in current-voltage measurements versus those determined by an Arrhenius analysis of conductance in the CB region. The energies do, however, scale with particle sizes, consistent with single-electron charging phenomena. We propose that the discrepancy is caused by a multibarrier junction potential that leads to a voltage divider effect. Temperature and voltage dependent conductance measurements performed outside the blockade region are consistent with this picture. We simulated our data using a suitably modified orthodox model. © 2005 The American Physical Society
    corecore