17 research outputs found

    Se Isotopes as Groundwater Redox Indicators:Detecting Natural Attenuation of Se at an in Situ Recovery U Mine

    Get PDF
    One of the major ecological concerns associated with the in situ recovery (ISR) of uranium (U) is the environmental release of soluble, toxic selenium (Se) oxyanions generated by mining. Post-mining natural attenuation by the residual reductants in the ore body and reduced down-gradient sediments should mitigate the risk of Se contamination in groundwater. In this work, we investigate the Se concentrations and Se isotope systematics of groundwater and of U ore bearing sediments from an ISR site at Rosita, TX, USA. Our results show that selenate (Se­(VI)) is the dominant Se species in Rosita groundwater, and while several up-gradient wells have elevated Se­(VI), the majority of the ore zone and down-gradient wells have little or no Se oxyanions. In addition, the δ<sup>82</sup>Se<sub>VI</sub> of Rosita groundwater is generally elevated relative to the U ore up to +6.14‰, with the most enriched values observed in the ore-zone wells. Increasing δ<sup>82</sup>Se with decreasing Se­(VI) conforms to a Rayleigh type distillation model with an ε of −2.25‰ ± 0.61‰, suggesting natural Se­(VI) reduction occurring along the hydraulic gradient at the Rosita ISR site. Furthermore, our results show that Se isotopes are excellent sensors for detecting and monitoring post-mining natural attenuation of Se oxyanions at ISR sites

    Colloid Facilitated Transport in Fractured Rocks: Parameter Estimation and Comparison with Experimental Data

    No full text
    ABSTRACT Colloid-facilitated migration of plutonium in fractured rock has been implicated in both field and laboratory studies. Other reactive radionuclides may also experience enhanced mobility due to groundwater colloids. Model prediction of this process is necessary for assessment of contaminant boundaries in systems for which radionuclides are already in the groundwater and for performance assessment of potential repositories for radioactive waste. Therefore, a reactive transport model is developed and parameterized using results from controlled laboratory fracture column experiments. Silica, montmorillonite and clinoptilolite colloids are used in the experiments along with plutonium and Tritium.. The goal of the numerical model is to identify and parameterize the physical and chemical processes that affect the colloidfacilitated transport of plutonium in the fractures. The parameters used in this model are similar in form to those that might be used in a field-scale transport model

    Single-Well Push&ndash;Pull Tracer Test Analyses to Determine Aquifer Reactive Transport Parameters at a Former Uranium Mill Site (Grand Junction, Colorado)

    No full text
    At a former uranium mill site where tailings have been removed, prior work has determined several potential ongoing secondary uranium sources. These include locations with uranium sorbed to organic carbon, uranium in the unsaturated zone, and uranium associated with the presence of gypsum. To better understand uranium mobility controls at the site, four single-well push&ndash;pull tests (with a drift phase) were completed with the goal of deriving aquifer flow and contaminant transport parameters for inclusion in a future sitewide reactive transport model. This goes beyond the traditional use of a constant sorption distribution coefficient (Kd) and allows for the evaluation of alternative remedial injection fluids, which can produce variable Kd values. Dispersion was first removed from the resulting data to determine possible reactions before conducting reactive transport simulations. These initial analyses indicated the potential need to include cation exchange, uranium sorption, and gypsum dissolution. A reactive transport model using multiple layers to account for partially penetrating wells was completed using the PHT-USG reactive transport modeling code and calibrated using PEST. The model results quantify the hydraulic conductivity and dispersion parameters using the injected tracer concentrations. Uranium sorption, cation exchange, and gypsum dissolution parameters were quantified by comparing the simulated versus observed geochemistry. All simulations required some cation exchange and calcite equilibrium, and one simulation required gypsum dissolution to improve the model fit for calcium and sulfate. Uranium sorption parameters were not strongly influenced by the other parameter values but were highly influenced by uranium concentrations during the drift phase, with possible kinetic rate limitations. Thus, a future recommendation for such push&ndash;pull tests is to collect more geochemical data during the drift phase. The final uranium sorption parameters were within the range of values determined from prior column testing. The flow and transport parameters derived from these single-well push&ndash;pull tests will provide initial parameters for any future sitewide reactive transport model

    Single-Well Push–Pull Tracer Test Analyses to Determine Aquifer Reactive Transport Parameters at a Former Uranium Mill Site (Grand Junction, Colorado)

    No full text
    At a former uranium mill site where tailings have been removed, prior work has determined several potential ongoing secondary uranium sources. These include locations with uranium sorbed to organic carbon, uranium in the unsaturated zone, and uranium associated with the presence of gypsum. To better understand uranium mobility controls at the site, four single-well push–pull tests (with a drift phase) were completed with the goal of deriving aquifer flow and contaminant transport parameters for inclusion in a future sitewide reactive transport model. This goes beyond the traditional use of a constant sorption distribution coefficient (Kd) and allows for the evaluation of alternative remedial injection fluids, which can produce variable Kd values. Dispersion was first removed from the resulting data to determine possible reactions before conducting reactive transport simulations. These initial analyses indicated the potential need to include cation exchange, uranium sorption, and gypsum dissolution. A reactive transport model using multiple layers to account for partially penetrating wells was completed using the PHT-USG reactive transport modeling code and calibrated using PEST. The model results quantify the hydraulic conductivity and dispersion parameters using the injected tracer concentrations. Uranium sorption, cation exchange, and gypsum dissolution parameters were quantified by comparing the simulated versus observed geochemistry. All simulations required some cation exchange and calcite equilibrium, and one simulation required gypsum dissolution to improve the model fit for calcium and sulfate. Uranium sorption parameters were not strongly influenced by the other parameter values but were highly influenced by uranium concentrations during the drift phase, with possible kinetic rate limitations. Thus, a future recommendation for such push–pull tests is to collect more geochemical data during the drift phase. The final uranium sorption parameters were within the range of values determined from prior column testing. The flow and transport parameters derived from these single-well push–pull tests will provide initial parameters for any future sitewide reactive transport model
    corecore