109 research outputs found

    The PKC Inhibitor Ro31-8220 Blocks Acute Amphetamine-Induced Dopamine Overflow in the Nucleus Accumbens

    Get PDF
    Acute administration of the psychostimulant amphetamine increases extracellular levels of dopamine (DA) by reversing the DA transporter on ascending midbrain DA neurons. In vitro studies using striatal synaptosomal, slice and nucleus accumbens (NAcc) tissue preparations have implicated protein kinase C (PKC) in this effect. The present study further examined this effect in vivo by assessing the ability of the PKC inhibitor, Ro31-8220 (10 microM), to inhibit acute amphetamine-induced DA overflow when applied with this drug to the NAcc via reverse dialysis. Amphetamine was applied at a concentration of 30 microM, and the core and shell subregions of the NAcc were assayed separately in freely moving rats. These brain regions play a role in the acute locomotor-activating and motivational effects of amphetamine. Consistent with the findings of previous in vitro experiments, reverse dialysis of Ro31-8220 with amphetamine robustly attenuated the ability of this drug to increase extracellular levels of dopamine in both the core and shell subregions of the NAcc. These results confirm that amphetamine stimulates dopamine overflow via a PKC-dependent mechanism

    Inhibition Of Camkii in the Nucleus Accumbens Shell Decreases Enhanced Amphetamine Intake in Sensitized Rats

    Get PDF
    Microinjection of the calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 into the nucleus accumbens (NAcc) shell impairs expression of the sensitized locomotion and NAcc dopamine (DA) overflow normally observed in psychostimulant-exposed rats. Based on these results, we investigated the effect of NAcc shell KN-93 on the enhanced amphetamine (AMPH) intake normally observed in AMPH- relative to saline-exposed rats. Rats were administered five injections of either AMPH (1.5mg/kg, i.p.) or saline, one injection every 2-3 days. Fourteen days following the last injection, they were trained to self-administer AMPH (200 microg/kg/infusion, i.v.) first on fixed ratio schedules (FR) and then on a progressive ratio schedule of reinforcement (PR). As expected, AMPH-exposed rats worked harder and obtained significantly more drug infusions than saline-exposed rats on the PR schedule. After 4 days of stable responding, all rats were bilaterally microinjected with KN-93 (1 or 10 nmol/0.5 microl/side) into the NAcc shell, 2 min prior to the beginning of the self-administration session. Inhibiting CaMKII in this site reduced the enhanced drug intake observed in AMPH-exposed rats to levels no longer significantly different from those of saline-exposed rats. Responding in these latter controls was not affected by KN-93 nor did KN-93 affect responding in AMPH-exposed rats when it was infused into the NAcc core. Thus, in a manner similar to what has been reported for sensitized locomotion and NAcc DA overflow, these results suggest that inhibiting CaMKII in the NAcc shell attenuates the enhanced motivation to obtain a drug reinforcer that is normally displayed in AMPH-exposed rats

    Procedural Pediatric Sedation by Nurses: Available, Competent, and Safe

    Get PDF
    Sedation and/or analgesia are standard of care for pediatric patients during painful intervention or medical imaging requiring immobility. Physician availability is frequently insufficient to allow for all procedural sedation. A nurse-led sedation program was created at the Centre Hospitalier Universitaire de Sherbrooke (CHUS) to address this problem. Objective. To evaluate the effectiveness and the safety of our program. Methods. A retrospective study of all the procedural sedations done over one year was performed. Complications were separated in four categories: (1) major complications (call for help; unexpected admission, aspiration, and code); (2) reportable sedation events (oxygen saturation <90%, bradycardia (more than 2 SD below normal for the age of the child), and hypotension (more than 2 SD below normal for the age of the child); (3) difficult sedation (agitation, inadequate sedation, and failure to perform the procedure), (4) minor complications. Results. 448 patients, 249 boys and 199 girls; received sedation for 555 procedures. Overall, 78% (432) of interventions were successfully accomplished: 0% of major complications, 8% of reportable sedation events; 5% of difficult sedation; 9% of minor complications. Conclusion. Our nurse-led sedation program compares favorably to other similar systems

    Stimuli associated with the presence or absence of amphetamine regulate cytoskeletal signaling and behavior

    Get PDF
    Drug-paired stimuli rapidly enlarge dendritic spines in the nucleus accumbens (NAcc). While increases in spine size and shape are supported by rearrangement of the actin cytoskeleton and facilitate the synaptic expression of AMPA-type glutamate receptors, it remains unclear whether drug-related stimuli can influence signaling pathways known to regulate these changes in spine morphology. These pathways were studied in rats trained on a discrimination learning paradigm using subcellular fractionation and protein immunoblotting to isolate proteins within dendritic spine compartments in the NAcc shell. An open field chamber was repeatedly associated with amphetamine in one group (Paired) and explicitly unpaired with amphetamine in another (Unpaired). Rats in a third group were exposed to the open field but never administered amphetamine (Control). When administered saline and returned to the open field one week later, Paired rats as expected displayed a conditioned locomotor response relative to rats in the other two groups. NAcc shell tissues were harvested immediately after this 30-minute test. Re-exposing Paired rats to the drug-paired excitatory context significantly decreased p-GluA2(S880), an effect consistent with reduced internalization of this subunit and increased spine proliferation in these rats. In contrast, re-exposing Unpaired rats to the drug-unpaired context, capable of inhibiting conditioned responding in these animals, significantly decreased levels of both actin binding protein Arp2/3 and p-cofilin, consistent with spine volatility, shrinkage, and inhibition of spine proliferation in these rats. These findings show that contextual stimuli previously associated with either the presence or absence of amphetamine differentially regulate cytoskeletal signaling pathways in the NAcc

    Neuronal and psychological underpinnings of pathological gambling

    Get PDF
    Like in the case of drugs, gambling hijacks reward circuits in a brain which is not prepared to receive such intense stimulation. Dopamine is normally released in response to reward and uncertainty in order to allow animals to stay alive in their environment – where rewards are relatively unpredictable. In this case, behavior is regulated by environmental feedbacks, leading animals to persevere or to give up. In contrast, drugs provide a direct, intense pharmacological stimulation of the dopamine system that operates independently of environmental feedbacks, and hence causes “motivational runaways”. With respect to gambling, the confined environment experienced by gamblers favors the emergence of excitatory conditioned cues, so that positive feedbacks take over negative feedbacks. Although drugs and gambling may act differently, their abnormal activation of reward circuitry generates an underestimation of negative consequences and promotes the development of addictive/compulsive behavior. In Parkinson’s and Huntington’s disease, dopamine-related therapies may disrupt these feedbacks on dopamine signalling, potentially leading to various addictions, including pathological gambling. The goal of this Research Topic is to further our understanding of the neurobiological mechanisms underlying the development of pathological gambling. This eBook contains a cross-disciplinary collection of research and review articles, ranging in scope from animal behavioral models to human imaging studies

    Persistent Reversal of Enhanced Amphetamine Intake by Transient CaMKII Inhibition

    Get PDF
    Amphetamine exposure transiently increases CaMKIIα expression in the nucleus accumbens (NAcc) shell and this persistently increases local GluA1 S831 phosphorylation and enhances behavioral responding to the drug. Here we assessed whether transiently interfering with CaMKII signaling using a dominant-negative CaMKIIα mutant delivered to the NAcc shell with herpes simplex viral (HSV) vectors could reverse these long-lasting biochemical and behavioral effects observed following exposure to amphetamine. As expected, transient expression of CaMKIIα K42M in the NAcc shell produced a corresponding transient increase in CaMKIIα and decrease in pCaMKIIα (T286) protein levels in this site. Remarkably, this transient inhibition of CaMKII activity produced a long-lasting reversal of the increased GluA1 S831 phosphorylation levels in NAcc shell and persistently blocked the enhanced locomotor response to and self-administration of amphetamine normally observed in rats previously exposed to the drug. Together, these results indicate that even transient interference with CaMKII signaling may confer long-lasting benefits in drug sensitized individuals and point to CaMKII and its downstream pathways as attractive therapeutic targets for the treatment of stimulant addiction

    Casein Kinase 1 Enables Nucleus Accumbens Amphetamine-Induced Locomotion by Regulating AMPA Receptor Phosphorylation

    Get PDF
    The closely related δ and ε isoforms of the serine/threonine protein kinase casein kinase 1 (Csnk1) have been implicated in the generation of psychostimulant-induced behaviors. In this study, we show that Csnk1δ/ε produces its effects on behavior by acting on the Darpp-32-PP1 signaling pathway to regulate AMPA receptor phosphorylation in the nucleus accumbens (NAcc). Inhibiting Csnk1δ/ε in the NAcc with the selective inhibitor PF-670462 blocks amphetamine induced locomotion and its ability to increase phosphorylation of Darpp-32 at S137 and T34, decrease PP1 activity and increase phosphorylation of the AMPA receptor subunit at S845. Consistent with these findings, preventing GluR1 phosphorylation with the alanine mutant GluR1(S845A) reduces glutamate-evoked currents in cultured medium spiny neurons and blocks the locomotor activity produced by NAcc amphetamine. Thus, Csnk1 enables the locomotor and likely the incentive motivational effects of amphetamine by regulating Darrp-32-PP1-GlurR1(S845) signaling in the NAcc. As such, Csnk1 may be a critical target for intervention in the treatment of drug use disorders

    Locomotor conditioning by amphetamine requires cyclin-dependent kinase 5 signaling in the nucleus accumbens

    Get PDF
    Intermittent systemic exposure to psychostimulants such as amphetamine leads to several forms of long-lasting behavioral plasticity including non-associative sensitization and associative conditioning. In the nucleus accumbens (NAcc), the protein serine/threonine kinase cyclin-dependent kinase 5 (Cdk5) and its phosphorylation target, the guanine-nucleotide exchange factor kalirin-7 (Kal7), may contribute to the neuroadaptations underlying each of these forms of plasticity. Pharmacological inhibition of Cdk5 in the NAcc prevents the increases in dendritic spine density in this site and enhances the locomotor sensitization normally observed following repeated cocaine. Mice lacking the Kal7 gene display similar phenotypes suggesting that locomotor sensitization and increased NAcc spine density need not be positively correlated. As increases in spine density may relate to the formation of associative memories and both Cdk5 and Kal7 regulate the generation of spines following repeated drug exposure, we hypothesized that either inhibiting Cdk5 or preventing its phosphorylation of Kal7 in the NAcc may prevent the induction of drug conditioning. In the present experiments, blockade in rats of NAcc Cdk5 activity with roscovitine (40 nmol/0.5µl/side) prior to each of 4 injections of amphetamine (1.5 mg/kg; i.p.) prevented the accrual of contextual locomotor conditioning but spared the induction of locomotor sensitization as revealed on tests conducted one week later. Similarly, transient viral expression in the NAcc exclusively during amphetamine exposure of a threonine-alanine mutant form of Kal7 [mKal7(T1590A)] that is not phosphorylated by Cdk5 also prevented the accrual of contextual conditioning and spared the induction of sensitization. These results indicate that Cdk5 phosphorylation of Kal7 in the NAcc is necessary for the formation of context-drug associations potentially through the modulation of dendritic spine dynamics in this site
    corecore