66 research outputs found

    Computational and Spectroscopic Tools for the Detection of Bond Covalency in Pu(IV) Materials

    Get PDF
    Plutonium is used as a major component of new-generation nuclear fuels and of radioisotope batteries for Mars rovers, but it is also an environmental pollutant. Plutonium clearly has high technological and environmental importance, but it has an extremely complex, not well-understood electronic structure. The level of covalency of the Pu 5f valence orbitals and their role in chemical bonding are still an enigma and thus at the frontier of research in actinide science. We performed fully relativistic quantum chemical computations of the electronic structure of the Pu4+ ion and the PuO2 compound. Using four different theoretical tools, it is shown that the 5f orbitals have very little covalent character although the 5f(7/2) a2u orbital with the highest orbital energy has the greatest extent of covalency in PuO2. It is illustrated that the Pu M4,5 edge high-energy resolution X-ray absorption near-edge structure (Pu M4,5 HR-XANES) spectra cannot be interpreted in terms of dipole selection rules applied between individual 3d and 5f orbitals, but the selection rules must be applied between the total wavefunctions for the initial and excited states. This is because the states cannot be represented by single determinants. They are shown to involve major redistributions on the 5f electrons over the different 5f orbitals. These redistributions could be viewed as shake-up-like excitations in the 5f shell from the lowest orbital energy from J = 5f(5/2) into higher orbital energy J = 5f(7/2). We show that the second peak in the Pu M4 edge and the high-energy shoulder of the Pu M5 edge HR-XANES spectra probe the 5f(7/2) a2u orbital; thus, these spectral features are expected to change upon bond variations. We describe theoretical and spectroscopy tools, which can be applied for all actinide elements in materials with cubic structure

    Differential many-body effects for initial and core-ion states: impact on XPS spectra

    Get PDF
    In this paper, the contribution of many body effects to the X-ray photoelectron spectroscopy, XPS, of an NO molecule are studied using wavefunction theory where the specific consequences of different many-body terms are examined and contrasted. It is shown that there is a differential importance of the many-body effects for the different configurations involved in the XPS. These are the ground, initial state configuration and final, N(1s) and O(1s) core-hole ionic configurations. The consequences of the many-body effects are examined for the binding energies, BEs, to the two final state multiplets, triplet and singlet, for each of the core ions and for the relative intensities of the XPS transitions to these multiplets. The many body effects examined are those described as static effects that arise for individual terms that are important. The objective is to understand the chemical and physical origins that determine the importance of the correlation effects for the XPS, rather than to obtain very accurate predictions of the BEs. An important theoretical construct that is tested and justified is the equivalent core approximation where the core ionized atom is replaced by the next higher element in the periodic table. This construct allows us to establish a correlation for the relative importance of the many-body effects in terms of effective charges of the different atoms. This is a correlation that has not been considered before and that we expect may have general relevance. The potential of the effects that we have identified for the XPS of NO to be relevant for the XPS of more complex, condensed phase systems is considered

    Approaching multiplet splitting in X-ray photoelectron spectra by density functional theory methods: NO and O2 molecules as examples

    Get PDF
    The ability of density functional theory (DFT) based methods to predict the multiplet splitting arising from the core hole ionization of molecules such as NO and O2, exhibiting an open shell grounds state, is explored. In the NO molecule, N(1s) or O(1s) ionization leads to 3Π and 1Π multiplets whereas for O2, the presence of an O(1s) core hole leads to doublet and quartet multiplets with distinct BEs. Multiplet splittings obtained using different exchange-correlation functionals show an overall good agreement with experiment and minor variations within the functionals studied when spin contamination resulting from unrestricted DFT calculations is accounted for

    Limitations of the equivalent core model for understanding core-level spectroscopies

    Get PDF
    The equivalent core model, or the Z+1 approximation, has been used to interpret the binding energy, BE, shifts observed in X-ray photoelectron spectroscopy, XPS; in particular to relate these shifts to their origin in the electronic structure of the system. Indeed, a recent paper has claimed that the equivalent core model provides an intuitive chemical view of XPS BE shifts. In the present paper, we present a detailed comparison of the electronic structure provided from rigorous core-hole theory and from the equivalent core model to assess the validity and the utility of the use of the equivalent core model. This comparison shows that the equivalent core model provides a qualitative view of the different properties of initial and core-hole electronic structure. It is also shown that a very serious limitation of the equivalent core model is that it fails to distinguish between initial and final state contributions to the shifts of BEs which seriously reduces the utility of the information obtained with the equivalent core model. Indeed, there is a danger of making an incorrect assignment of the importance of relaxation because the equivalent core model appears to stress the role of final state effects. Given the importance of the distinction of initial and final state effects, we provide rigorous definitions of these two effects and we discuss an example where an incorrect interpretation was made based on the use of the equivalent core model

    Assessing the ability of DFT methods to describe static electron correlation effects: CO core level binding energies as a representative case

    Get PDF
    We use a total energy difference approach to explore the ability of various density functional theory based methods in accounting for the differential effect of static electron correlation on the C(1s) and O(1s) core level binding energies (BEs) of the CO molecule. In particular, we focus on the magnitude of the errors of the computed C(1s) and O(1s) BEs and on their relative difference as compared to experiment and to previous results from explicitly correlated wave functions. Results show that the different exchange-correlation functionals studied here behave rather erratically and a considerable number of them lead to large errors in the BEs and/or the BE shifts. Nevertheless, the TPSS functional, its TPSSm and RevTPSS derivations, and its corresponding hybrid counterpart, TPSSh, perform better than average and provide BEs and BE shifts in good agreement with experiment

    A poly-epoxy surface explored by Hartree-Fock ΔSCF simulations of C1s XPS spectra

    Get PDF
    Whereas poly-epoxy polymers represent a class of materials with a wide range of applications, the structural disorder makes them difficult to model. In the present work, we use good experimental model samples in the sense that they are pure, fully polymerized, flat and smooth, defect-free, and suitable for ultrahigh vacuum x-ray photoelectron spectroscopy, XPS, experiments. In parallel, we perform Hartree-Fock, HF, calculations of the binding energies, BEs, of the C1s electrons in a model molecule composed of the two constituents of the poly-epoxy sample. These C1s BEs were determined using the HF ΔSCF method, which is known to yield accurate values, especially for the shifts of the BEs, ΔBEs. We demonstrate the benefits of combining rigorous theory with careful XPS measurements in order to obtain correct assignments of the C1s XPS spectra of the polymer sample. Both the relative binding energies—by the ΔSCF method—and relative intensities—in the sudden approximation, SA, are calculated. It results in an excellent match with the experimental spectra. We are able to identify 9 different chemical environments under the C1s peak, where an exclusively experimental work would have found only 3 contributions. In addition, we observe that some contributions are localized at discrete binding energies, whereas others allow a much wider range because of the variation of their second neighbor bound polarization. Therefore, HF-ΔSCF simulations significantly increase the spectral resolution of XPS and thus offer a new avenue for the exploration of the surface of polymers
    • …
    corecore