91 research outputs found

    Do semiclassical zero temperature black holes exist?

    Get PDF
    The semiclassical Einstein equations are solved to first order in ϵ=ℏ/M2\epsilon = \hbar/M^2 for the case of a Reissner-Nordstr\"{o}m black hole perturbed by the vacuum stress-energy of quantized free fields. Massless and massive fields of spin 0, 1/2, and 1 are considered. We show that in all physically realistic cases, macroscopic zero temperature black hole solutions do not exist. Any static zero temperature semiclassical black hole solutions must then be microscopic and isolated in the space of solutions; they do not join smoothly onto the classical extreme Reissner-Nordst\"{o}m solution as ϵ→0\epsilon \to 0.Comment: 5 pages, no figures, minor changes and corrections, to appear in Physical Review Letter

    Semiclassical Stability of the Extreme Reissner-Nordstrom Black Hole

    Get PDF
    The stress-energy tensor of a free quantized scalar field is calculated in the extreme Reissner-Nordstr\"{o}m black hole spacetime in the zero temperature vacuum state. The stress-energy appears to be regular on the event horizon, contrary to the suggestion provided by two-dimensional calculations. An analytic calculation on the event horizon for a thermal state shows that if the temperature is nonzero then the stress-energy diverges strongly there.Comment: 10 pages, REVTeX, 4 figures in separate uuencoded compressed fil

    One-loop λϕ4\lambda \phi^4 theory in Robertson-Walker spacetimes: adiabatic regularization and analytic approximation

    Full text link
    The renormalization of a scalar field theory with a quartic self-coupling (a λϕ4\lambda \phi^4 theory) via adiabatic regularization in a general Robertson-Walker spacetime is discussed. The adiabatic counterterms are presented in a way that is most conducive to numerical computations. A variation of the adiabatic regularization method is presented which leads to analytic approximations for the energy-momentum tensor of the field and the quantum contribution to the effective mass of the mean field. Conservation of the energy-momentum tensor for the field is discussed and it is shown that the part of the energy-momentum tensor which depends only on the mean field is not conserved but the full renormalized energy-momentum tensor is conserved as expected and required by the semiclassical Einstein's equation. It is also shown that if the analytic approximations are used then the resulting approximate energy-momentum tensor is conserved. This allows a self-consistent backreaction calculation to be performed using the analytic approximations. The usefulness of the approximations is discussed.Comment: 12 pages in revtex, and no figure

    Attractor states and infrared scaling in de Sitter space

    Get PDF
    The renormalized expectation value of the energy-momentum tensor for a scalar field with any mass m and curvature coupling xi is studied for an arbitrary homogeneous and isotropic physical initial state in de Sitter spacetime. We prove quite generally that has a fixed point attractor behavior at late times, which depends only on m and xi, for any fourth order adiabatic state that is infrared finite. Specifically, when m^2 + xi R > 0, approaches the Bunch-Davies de Sitter invariant value at late times, independently of the initial state. When m = xi = 0, it approaches instead the de Sitter invariant Allen-Folacci value. When m = 0 and xi \ge 0 we show that this state independent asymptotic value of the energy-momentum tensor is proportional to the conserved geometrical tensor (3)H_{ab}, which is related to the behavior of the quantum effective action of the scalar field under global Weyl rescaling. This relationship serves to generalize the definition of the trace anomaly in the infrared for massless, non-conformal fields. In the case m^2 + xi R = 0, but m and xi separately different from zero, grows linearly with cosmic time at late times. For most values of m and xi in the tachyonic cases, m^2 + xi R grows exponentially at late cosmic times for all physically admissable initial states.Comment: 30 pages, 6 figures, 46 kB tar.gz fil

    Method to compute the stress-energy tensor for the massless spin 1/2 field in a general static spherically symmetric spacetime

    Get PDF
    A method for computing the stress-energy tensor for the quantized, massless, spin 1/2 field in a general static spherically symmetric spacetime is presented. The field can be in a zero temperature state or a non-zero temperature thermal state. An expression for the full renormalized stress-energy tensor is derived. It consists of a sum of two tensors both of which are conserved. One tensor is written in terms of the modes of the quantized field and has zero trace. In most cases it must be computed numerically. The other tensor does not explicitly depend on the modes and has a trace equal to the trace anomaly. It can be used as an analytic approximation for the stress-energy tensor and is equivalent to other approximations that have been made for the stress-energy tensor of the massless spin 1/2 field in static spherically symmetric spacetimes.Comment: 34 pages, no figure

    International Veterinary Epilepsy Task Force consensus proposal: Medical treatment of canine epilepsy in Europe

    Get PDF
    In Europe, the number of antiepileptic drugs (AEDs) licensed for dogs has grown considerably over the last years. Nevertheless, the same questions remain, which include, 1) when to start treatment, 2) which drug is best used initially, 3) which adjunctive AED can be advised if treatment with the initial drug is unsatisfactory, and 4) when treatment changes should be considered. In this consensus proposal, an overview is given on the aim of AED treatment, when to start long-term treatment in canine epilepsy and which veterinary AEDs are currently in use for dogs. The consensus proposal for drug treatment protocols, 1) is based on current published evidence-based literature, 2) considers the current legal framework of the cascade regulation for the prescription of veterinary drugs in Europe, and 3) reflects the authors’ experience. With this paper it is aimed to provide a consensus for the management of canine idiopathic epilepsy. Furthermore, for the management of structural epilepsy AEDs are inevitable in addition to treating the underlying cause, if possible

    Characterization of the L-Lactate Dehydrogenase from Aggregatibacter actinomycetemcomitans

    Get PDF
    Aggregatibacter actinomycetemcomitans is a Gram-negative opportunistic pathogen and the proposed causative agent of localized aggressive periodontitis. A. actinomycetemcomitans is found exclusively in the mammalian oral cavity in the space between the gums and the teeth known as the gingival crevice. Many bacterial species reside in this environment where competition for carbon is high. A. actinomycetemcomitans utilizes a unique carbon resource partitioning system whereby the presence of L-lactate inhibits uptake of glucose, thus allowing preferential catabolism of L-lactate. Although the mechanism for this process is not fully elucidated, we previously demonstrated that high levels of intracellular pyruvate are critical for L-lactate preference. As the first step in L-lactate catabolism is conversion of L-lactate to pyruvate by lactate dehydrogenase, we proposed a model in which the A. actinomycetemcomitans L-lactate dehydrogenase, unlike homologous enzymes, is not feedback inhibited by pyruvate. This lack of feedback inhibition allows intracellular pyruvate to rise to levels sufficient to inhibit glucose uptake in other bacteria. In the present study, the A. actinomycetemcomitans L-lactate dehydrogenase was purified and shown to convert L-lactate, but not D-lactate, to pyruvate with a Km of approximately 150 µM. Inhibition studies reveal that pyruvate is a poor inhibitor of L-lactate dehydrogenase activity, providing mechanistic insight into L-lactate preference in A. actinomycetemcomitans

    SHock-INduced Endotheliopathy (SHINE): A mechanistic justification for viscoelastography-guided resuscitation of traumatic and non-traumatic shock

    Get PDF
    Irrespective of the reason for hypoperfusion, hypocoagulable and/or hyperfibrinolytic hemostatic aberrancies afflict up to one-quarter of critically ill patients in shock. Intensivists and traumatologists have embraced the concept of SHock-INduced Endotheliopathy (SHINE) as a foundational derangement in progressive shock wherein sympatho-adrenal activation may cause systemic endothelial injury. The pro-thrombotic endothelium lends to micro-thrombosis, enacting a cycle of worsening perfusion and increasing catecholamines, endothelial injury, de-endothelialization, and multiple organ failure. The hypocoagulable/hyperfibrinolytic hemostatic phenotype is thought to be driven by endothelial release of anti-thrombogenic mediators to the bloodstream and perivascular sympathetic nerve release of tissue plasminogen activator directly into the microvasculature. In the shock state, this hemostatic phenotype may be a counterbalancing, yet maladaptive, attempt to restore blood flow against a systemically pro-thrombotic endothelium and increased blood viscosity. We therefore review endothelial physiology with emphasis on glycocalyx function, unique biomarkers, and coagulofibrinolytic mediators, setting the stage for understanding the pathophysiology and hemostatic phenotypes of SHINE in various etiologies of shock. We propose that the hyperfibrinolytic phenotype is exemplified in progressive shock whether related to trauma-induced coagulopathy, sepsis-induced coagulopathy, or post-cardiac arrest syndrome-associated coagulopathy. Regardless of the initial insult, SHINE appears to be a catecholamine-driven entity which early in the disease course may manifest as hyper- or hypocoagulopathic and hyper- or hypofibrinolytic hemostatic imbalance. Moreover, these hemostatic derangements may rapidly evolve along the thrombohemorrhagic spectrum depending on the etiology, timing, and methods of resuscitation. Given the intricate hemochemical makeup and changes during these shock states, macroscopic whole blood tests of coagulative kinetics and clot strength serve as clinically useful and simple means for hemostasis phenotyping. We suggest that viscoelastic hemostatic assays such as thromboelastography (TEG) and rotational thromboelastometry (ROTEM) are currently the most applicable clinical tools for assaying global hemostatic function—including fibrinolysis—to enable dynamic resuscitation with blood products and hemostatic adjuncts for those patients with thrombotic and/or hemorrhagic complications in shock states
    • …
    corecore