158 research outputs found

    An Integrated Approach to the Exposome: Rappaport and Lioy Respond

    Get PDF

    Human Exposure Assessment in Air Pollution Systems

    Get PDF
    The air pollution problem can be depicted as a system consisting of several basic components: source, concentration, exposure, dose, and adverse effects. Exposure, the contact between an agent (e.g., an air pollutant) and a target (e.g., a human respiratory tract), is the key to linking the pollution source and health effects. Human exposure to air pollutants depends on exposure concentration and exposure duration. Exposure concentration is the concentration of a pollutant at a contact boundary, which usually refers to the human breathing zone. However, ambient concentrations of regulated pollutants at monitoring sites have been measured in practice to represent actual exposure. This can be a valid practice if the pollutants are ones that are predominantly generated outdoors and if the monitoring sites are appropriately selected to reflect where people are. Results from many exposure studies indicate that people are very likely to receive the greatest exposure to many toxic air pollutants not outside but inside places such as homes, offices, and automobiles. For many of these pollutants, major sources of exposure can be quite different from major sources of emission. This is because a large emission source can have a very small value of exposure effectiveness, i.e., the fraction of pollutant released from a source that actually reaches the human breathing zone. Exposure data are crucial to risk management decisions for setting priorities, selecting cost-effective approaches to preventing or reducing risks, and evaluating risk mitigation efforts. Measurement or estimate of exposure is essential but often inadequately addressed in environmental epidemiologic studies. Exposure can be quantified using direct or indirect measurement methods, depending upon the purpose of exposure assessment and the availability of relevant data. The rapidly developing battery and electronic technologies as well as advancements in molecular biology are expected to accelerate the improvement of current methods and the development of new methods for future exposure assessment

    Characterization of the dust/smoke aerosol that settled east of the World Trade Center (WTC) in Lower Manhattan after the collapse of the WTC 11 September 2001

    Get PDF
    The explosion and collapse of the World Trade Center (WTC) was a catastrophic event that produced an aerosol plume impacting many workers, residents, and commuters during the first few days after 11 September 2001. Three bulk samples of the total settled dust and smoke were collected at weather-protected locations east of the WTC on 16 and 17 September 200 1; these samples are representative of the generated material that settled immediately after the explosion and fire and the concurrent collapse of the two structures. We analyzed each sample, not differentiated by particle Size, for inorganic and organic composition. In the inorganic analyses, we identified metals, radionuclides, ionic species, asbestos, and inorganic species. In the organic analyses, we identified polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, polychlorinated dibenzodioxins, polychlorinated dibenzofurans, pesticides, phthallate esters, brominated diphenyl ethers, and other hydrocarbons. Each sample had a basic pH. Asbestos levels ranged from 0.8% to 3.0% of the mass, the PAHs were \u3e0.1% of the mass, and lead ranged from 101 to 625 mug/g. The content and distribution of material was indicative of a complex mixture of building debris and combustion products in the resulting plume. These three samples were composed primarily of construction materials, soot, paint (leaded and unleaded), and glass fibers (mineral wool and fiberglass). Levels of hydrocarbons indicated unburned or partially burned jet fuel, plastic, cellulose, and other materials that were ignited by the fire. In morphologic analyses we found that a majority of the mass was fibrous and composed of many types of fibers (e.g., mineral wool, fiberglass, asbestos, wood, paper, and cotton). The particles were separated into size classifications by gravimetric and aerodynamic methods. Material \u3c 2.5 mu m in aerodynamic diameter was 0.88-1.98% of the total mass. The largest mass concentrations were \u3e 53 mum in diameter. The results obtained from these samples can be used to understand the contact and types of exposures to this unprecedented complex mixture experienced by the surviving residents, commuters, and rescue workers directly affected by the plume from 11 to 12 September and the evaluations of any acute or long-term health effects from resuspendable dust and smoke to the residents, commuters, and local workers, as well as from the materials released after 11 September until the fires were extinguished. Further, these results support the need to have the interior of residences, buildings, and their respective HVAC systems professionally cleaned to reduce long-term residential risks before rehabitation

    Indoor air sampling for fine particulate matter and black carbon in industrial communities in Pittsburgh

    Get PDF
    AbstractImpacts of industrial emissions on outdoor air pollution in nearby communities are well-documented. Fewer studies, however, have explored impacts on indoor air quality in these communities. Because persons in northern climates spend a majority of their time indoors, understanding indoor exposures, and the role of outdoor air pollution in shaping such exposures, is a priority issue. Braddock and Clairton, Pennsylvania, industrial communities near Pittsburgh, are home to an active steel mill and coke works, respectively, and the population experiences elevated rates of childhood asthma. Twenty-one homes were selected for 1-week indoor sampling for fine particulate matter (PM2.5) and black carbon (BC) during summer 2011 and winter 2012. Multivariate linear regression models were used to examine contributions from both outdoor concentrations and indoor sources. In the models, an outdoor infiltration component explained 10 to 39% of variability in indoor air pollution for PM2.5, and 33 to 42% for BC. For both PM2.5 models and the summer BC model, smoking was a stronger predictor than outdoor pollution, as greater pollutant concentration increases were identified. For winter BC, the model was explained by outdoor pollution and an open windows modifier. In both seasons, indoor concentrations for both PM2.5 and BC were consistently higher than residence-specific outdoor concentration estimates. Mean indoor PM2.5 was higher, on average, during summer (25.8±22.7μg/m3) than winter (18.9±13.2μg/m3). Contrary to the study's hypothesis, outdoor concentrations accounted for only little to moderate variability (10 to 42%) in indoor concentrations; a much greater proportion of PM2.5 was explained by cigarette smoking. Outdoor infiltration was a stronger predictor for BC compared to PM2.5, especially in winter. Our results suggest that, even in industrial communities of high outdoor pollution concentrations, indoor activities – particularly cigarette smoking – may play a larger role in shaping indoor exposures

    Considerations for design of source apportionment studies

    Get PDF
    This report recommends procedures for source and ambient sampling and analysis in source apportionment studies. The recommendations are based on the results of receptor model studies of atmospheric particles in urban areas, especially a recent study of Houston, TX, undertaken as part of the Mathematical and Empirical Receptor Models Workshop (Quail Roost II). The recommendations are presented at three levels of increasing cost and detail of information obtained. Existing mass emissions inventories combined with chemically resolved test data from similar sources (not necessarily in the same locale) can be used to initially estimate the sources of elements present on ambient particles. To aid local users in construction of chemically resolved emission estimates, the U.S. Environmental Protection Agency (EPA) is compiling a library of compositions and size distributions of particulate emissions from major source types. More reliable source characterization can be achieved if the actual sources are tested directly. EPA should develop and publish detailed procedures for source sampling that would be more appropriate for receptor model use than are existing standard methods. Source and ambient sampling should be conducted by similar methods. If possible, particles from sources should be collected in a way that simulates changes that would normally occur before they reach distant receptors (e.g. by diluting and cooling the particles from hot sources). It is recommended that particulate samples be routinely collected in two size fractions by use of virtual impactors and that all samples be subjected, at a minimum, to mass and X-ray fluorescence analyses. Additional measurements are suggested for obtaining more detailed information: neutron activation analysis; X-ray diffraction; automated particle classification by electron microscopy; analyses for classes of organic species, ^(14)C and thermally released carbonaceous species; and real-time observation of several gases during sample collection. Methods for collecting meteorological data in parallel with ambient samples are described, as are methods for incorporating such data into the source identification process
    • …
    corecore