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Impacts of industrial emissions on outdoor air pollution in nearby communities are well-documented. Fewer
studies, however, have explored impacts on indoor air quality in these communities. Because persons in northern
climates spend amajority of their time indoors, understanding indoor exposures, and the role of outdoor air pol-
lution in shaping such exposures, is a priority issue. Braddock and Clairton, Pennsylvania, industrial communities
near Pittsburgh, are home to an active steel mill and coke works, respectively, and the population experiences
elevated rates of childhood asthma. Twenty-one homes were selected for 1-week indoor sampling for fine par-
ticulate matter (PM2.5) and black carbon (BC) during summer 2011 and winter 2012. Multivariate linear regres-
sion models were used to examine contributions from both outdoor concentrations and indoor sources. In the
models, an outdoor infiltration component explained 10 to 39% of variability in indoor air pollution for PM2.5,
and 33 to 42% for BC. For both PM2.5 models and the summer BC model, smoking was a stronger predictor
than outdoor pollution, as greater pollutant concentration increases were identified. For winter BC, the model
was explained by outdoor pollution and an open windows modifier. In both seasons, indoor concentrations for
both PM2.5 and BC were consistently higher than residence-specific outdoor concentration estimates. Mean in-
door PM2.5 was higher, on average, during summer (25.8 ± 22.7 μg/m3) than winter (18.9 ± 13.2 μg/m3). Con-
trary to the study's hypothesis, outdoor concentrations accounted for only little to moderate variability (10 to
42%) in indoor concentrations; a much greater proportion of PM2.5 was explained by cigarette smoking. Outdoor
infiltration was a stronger predictor for BC compared to PM2.5, especially inwinter. Our results suggest that, even
in industrial communities of high outdoor pollution concentrations, indoor activities – particularly cigarette
smoking –may play a larger role in shaping indoor exposures.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Impacts of industrial emissions on outdoor air pollution in nearby
communities are well-documented (Pope, 2007; Elliott et al., 1999;
Curtis et al., 2006; Perlin et al., 1995) and, although outdoor concentra-
tions explain a significant proportion of indoor pollution (Baxter et al.,
2007a,b; Abt et al., 2000b; Levy et al., 2010), fewer studies have ex-
plored indoor air quality in industrial communities. Indoor pollution
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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mayhave significant bearing on health, and better characterize personal
exposures (Clougherty et al., 2011), because persons in Northern cli-
mates spend a majority of their time indoors (Wallace, 1996), and in-
door pollutant concentrations have been shown higher than outdoor
concentrations, even in developed countries (EPA, 2012a; Morawska
et al., 2001; Adgate et al., 2002).

Although ambient air pollution has decreased over the past three de-
cades in the U.S., systemic diseases associated with ambient pollution
have increased (Lioy and Georgopoulos, 2011; Dominici et al., 2007),
and this burden has not been equitably distributed (Clougherty et al.,
2011; Gauderman et al., 2004; Samet et al., 2000; Self et al., 2005;
Pope et al., 2009; Brunekreef et al., 1997). In low income communities,
often located near industrial sites or alongside major roadways in
western countries, both indoor and outdoor residential exposures may
be highly elevated, and adversely impact health (Pope et al., 2009;
Brunekreef et al., 1997).

Indoor concentrations are a composite of outdoor concentrations
(which vary by residential location) and indoor sources, modified by
ventilation characteristics (Baxter et al., 2007a; Abt et al., 2000a). Spatial
variance in outdoor concentrations of fine particulate matter (PM2.5)
can vary by orders of magnitude across an urban area, attributable to
proximity to industrial and traffic sources, and modifying factors such
as elevation or meteorology (Clougherty et al., 2011; Adgate et al.,
2002). While this variance in outdoor air pollution may result in sub-
stantial indoor concentration variability, indoor sources, such as
cooking, smoking, and cleaning activities, can contribute significantly
to indoor air pollution (Abt et al., 2000a; Semple et al., 2012).

The communities of Braddock and Clairton, Pennsylvania, located
immediately east of Pittsburgh, are situated in river valleys along the
Monongahela River, and are home to an active steel mill and coke
works, annually producing 725.2 and 1048.8 tons of primary PM2.5,

respectively (USS, 2012; EPA, 2012b). These industrial sources rep-
resent two of the largest stationary sources of fine particles in Alle-
gheny County, which has consistently exceeded National Ambient
Air Quality (NAAQS) Standards for PM2.5 (CDC, 2010; Kelly, 2007;
EPA, 2009).

Following on our prior studies on spatial variance in multiple am-
bient air pollutants across this area (Tunno et al., 2015; Shmool et al.,
2014; Tunno et al., 2012), here we examined indoor PM2.5 and black
carbon (BC) concentrations in Braddock and Clairton households,
during summer 2011 and winter 2012, to quantify the contribution
of high outdoor concentrations in industrial communities to indoor
concentrations, and to compare the contribution of outdoor concen-
trations vs. indoor sources. We hypothesize that the high outdoor air
pollution concentrations in these communities should contribute
significantly to indoor concentrations, and further hypothesize that
pollutant concentrations would: (1) be higher indoors vs. outdoors,
(2) vary by season, and (3) vary by indoor source activity, including
cooking and smoking.

2. Methods

2.1. Study design

Families with at least one asthmatic child participating in a cohort
recruited by the Pediatric Environmental Medicine Center (PEMC) at
Pittsburgh Children's Hospital were invited to participate in the study.
Twenty-one homes in and around the Braddock and Clairton communi-
ties were sampled for one week during both a summer (July 25th to
September 13th, 2011) and winter (January 30th to March 5th, 2012)
sampling session. For spatial contrast, six convenience sample homes
were recruited from neighborhoods further from the industrial sites.
The study area containing the homes was selected within the
previously-sampled outdoor monitoring domain, enabling develop-
ment of spatio-temporal home-specific outdoor estimates, detailed
below.
2.2. Monitoring instrumentation and quality control

Indoor PM2.5 sampleswere collected using a Harvard Personal Expo-
sureMonitor (PEM)with aMEDO linear-piston vacuumpump. Teflon™
filters (37 mm) were pre- and post-weighed in a temperature and rela-
tive humidity (RH)-controlled (20.0 °C and 35%RH) glove box (PlasLabs
Model 890 THC, Lansing, MI) on an ultramicrobalance (Mettler Toledo
Model XP2U, Columbus, OH). PM2.5 concentrations were calculated
using the two PEMs from each home and averaged, for overall PM2.5

concentration for theweek-long (7-day) sampling duration. Reflectom-
etry was performed on these PM2.5 filters using an EEL43M Smokestain
Reflectometer (Diffusion Systems Limited, London, England) to esti-
mate black carbon (BC) absorbance units (ISO 9835:1993, 1993), prior
to compositional analysis by inductively-coupled plasma mass spec-
trometry (ICP-MS) at Wisconsin State Hygiene Laboratories. A HOBO
Data Logger (Onset devices, Pocasset, MA) recorded temperature and
RH every five minutes. Temperature and RH measures from the HOBO
device were averaged for the entire sampling period. All measures
were corrected using full method blanks.

Samplers were placed in themain activity room, away fromwindows
and combustion or heat sources. After three days, the PEM was replaced,
to avoid particle overload on the impactor plate and perturbation of the
particle size cut-point. To assess reproducibility, two homes were ran-
domly selected each season for co-located sampling. A standardized log
sheetwas used to record sampling start and stop times, andquestionnaire
on indoor source activities was administered in-person to an adult resi-
dent of each home, on the final sampling day.

2.3. Indoor questionnaire

An adult over 18 years of age in each home completed an indoor air
pollution questionnaire for both summer and winter sampling sessions
(Baxter et al., 2007a; Dutta et al., 2007). Questions included items on
household composition (i.e., number of adults and children, pets), details
on smoking, cooking, cleaning and solvent use, use of pesticides or scent-
ed sprays, use of matches, burning of candles or similar, use of doormats,
carpeting, and wearing shoes indoors, pests (incl. mice, roaches, insects),
mold andmildew, and heating and ventilation characteristics (draftiness,
percent of timewindows open, air conditioning or humidifier use). Study
data was managed using REDCap (Research Electronic Data Capture)
hosted by the University of Pittsburgh (Harris et al., 2009). Questionnaire
covariates were created, and correlations with PM2.5 and BC examined,
using SAS version 9.3 (SAS Institute Inc., Cary, NC).

2.4. Outdoor concentration estimates

Home- andweek-specific outdoor concentration estimates were de-
rived using our previously-published full-week LUR models for PM2.5

and BC (Tunno et al., 2015). This outdoor sampling campaign was sys-
tematically designed to sample across 37 areas with contrasting gradi-
ents of traffic density, elevation, and industrial emissions (Shmool
et al., 2014), in an attempt to seek out the effect of industry, terrain,
and traffic congestion on outdoor PM2.5 and BC. In these outdoor
models, industrial emissions, traffic density, and elevation explained
substantial spatial variance across our domain, after accounting for tem-
poral variability using an upwind reference site (Tunno et al., 2015). For
the present study, we calculated outdoor concentrations at each home
using the mean value from the LUR surface for the area within 300 m
of each home, as in Ross et al. (2013), and hourly EPAAir Quality System
(AQS) data for PM2.5 from the nearby Liberty and Lawrenceville moni-
toring locations (Fig. 1), averaged for the specific sampling hours at
each home. These LUR-based outdoor estimates (Tunno et al., 2015)
were also used to calculate indoor/outdoor ratios for PM2.5 and BC at
each home.

In addition to the LUR-based outdoor concentration estimates, we
separately examined effects of “reference site” concentrations, and



Fig. 1. Spatial distribution of sampling homes, EPA monitoring sites, and large industrial sources.
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three additional indicators of spatial variance in outdoor contribu-
tions: distance to industry (Euclidean distance from each home to
the nearer of the Clairton Coke Works or Braddock Edgar Thomson
Steel Works), IDW PM2.5 emissions (reported annual emissions
based on 2011 EPA NEI data EPA, 2013), and emissions/distance (re-
ported annual emissions from the nearer industrial facility, divided
by the home's distance from the site).

2.5. Ventilation indicators

Lacking direct measures of air exchange rates (AER), we derived
two proxy indicators: (1) an approximate I/O sulfur ratio, calculated
using the indoor sulfur concentrations from ICP-MS analysis of our
indoor PM2.5 filters, divided by sulfur concentrations from our refer-
ence monitors for those sampling days, and (2) percentage of time
when windows were open during the sampling period (Baxter
et al., 2007a).

2.6. Statistical analyses

Descriptive statistics, scatterplots, and histograms were used to
characterize distributions of PM2.5 and BC concentrations, outdoor con-
centration indicators, and indoor source terms (Table 1). Prior tomodel-
building, to assess the relative contribution of indoor and outdoor
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sources on indoor concentrations, we compared bivariate Pearson cor-
relations between indoor PM2.5 and BC concentrationswith each source
term, by season (Table 2).
2.7. Multivariate modeling

We built multivariate linear regression models, using a manual
forward-stepwise procedure to determine outdoor infiltration and in-
door sources of pollution. Outliers outside of the mean ± 3× standard
deviations were removed prior to model building; one outlier home in
the summer was removed where PM2.5 was greater than 121 μg/m3,
where residents reported smoking. Covariates significant at p b =
0.20 in the bivariate analysis were considered candidate covariates,
and individually incorporated into each model. Given our interest in
assessing the impact of outdoor concentrations in industrial communi-
ties on indoor exposures, we first incorporated the location- and week-
specific (LUR-based) outdoor concentration estimate into each model,
and examined effect modification by the ventilation proxies (I/O sulfur
ratio, and percent of timewindows were open). We then tested each of
the additional candidate outdoor source term, ordered by descending
strength of the bivariate correlation, then tested significant source
terms for effect modification by ventilation. Finally, we tested indoor
source terms, ordered by descending strength of the bivariate correla-
tion, and tested for effect modification by ventilation on each term
(Baxter et al., 2007a).

Model fit was assessed at each stage, using the coefficient of deter-
mination (R2) and root mean square error (RMSE). For a covariate to
be retained at each stage, we required p-value b 0.10, an increase in
R2 of at least 0.01, a decrease in RMSE, and VIF b 2.0 for all model
terms. At each stage, non-significant covariates were individually re-
moved by descending p-value, and the model re-fit. In Tables 3 and 4,
we report the pollutant concentration increases associated with an in-
terquartile range (IQR) increase in each source indicator (β × IQR)
from each multivariate model.
2.8. Sensitivity testing

Scatterplots were examined to assess fits between each significant
predictor and pollutant concentrations, to ensure that covariate selec-
tion was not reliant on outliers. We rank ordered I/O sulfur ratios for
the 21 homes as an attempt to reveal indoor sources of sulfur effects
of air conditioning and the frequency of opening windows. We tested
rank ordered I/O sulfur ratios instead of the outdoor LUR concentration
estimates for all four multivariate models, but these did not improve
model fit. Final model residuals were examined to ensure normality.
Each model term was examined against the residual of the model
without that term, to ensure that each term explained unique variance.
Indoor concentration predictions were compared to observed concen-
trations using scatter plots. Finally, we tested the sensitivity of averag-
ing outdoor pollutant concentrations within a 300 m buffer by
comparing it to predicted concentrations at the point of the home loca-
tion, finding correlations greater than 0.86. Statistical analyses were
conducted using Proc Reg and Proc GLM in SAS version 9.3 (SAS Insti-
tute Inc., Cary, NC).
Table 1
Descriptive statistics for pollutant and meteorological data.

Summer 2011 Winter 2012

Mean PM2.5 (μg/m3) (SD) 25.8 (±22.7) 18.9 (±13.2)
Mean BC (abs) (SD) 2.8 (±1.2) 2.3 (±1.4)
Temperature (°F) (mean, min–max) 77.4 (68–83) 68.7 (63–80)
Relative humidity (%) (mean, min–max) 55.6 (42–65) 33.1 (17–48)
3. Results

3.1. Indoor summer and winter PM2.5 and BC concentrations

A higher mean indoor PM2.5 concentration of 25.8 μg/m3 (SD
22.7 μg/m3) was detected during summer, vs. 18.9 μg/m3 (SD
13.2 μg/m3) during winter. For BC, a slightly higher mean of 2.8
absorbance units (SD 1.2 abs) was found during summer, vs.
2.3 abs (SD 1.4 abs) during winter.

3.2. Indoor/outdoor pollutant ratios

Pittsburgh-based outdoor PM2.5 and BC LUR estimates were deter-
mined for each home. We found consistently higher concentrations in-
doors than outdoors for PM2.5 and BC. In the summer, median I/O ratios
were 1.30 for PM2.5 and 1.47 for BC. In the winter, median I/O ratios
were 1.21 for PM2.5 and 1.38 for BC. Correlations between indoor and
outdoor predicted concentrations were fairly low, as correlations
ranged from 0.11 to 0.20 for PM2.5 and 0.14–0.28 for BC across both sea-
sons (Table 2).

Using EPA ambient data from Lawrenceville, PA, an urban Pittsburgh
neighborhood, the median summer I/O ratio was 1.29 for PM2.5. For the
winter, the ratio was 1.08 for PM2.5. Using ambient data from Liberty,
PA, an industrial Pittsburgh neighborhood, the median PM2.5 ratio was
1.26 for summer and 1.46 for winter.

3.3. Pollutant correlation to proximity to industry and outdoor LUR estimates

For summer, Pearson's correlation coefficients between both indoor
PM2.5 and BC concentrations with increasing distance from industry
were −0.35 (p = 0.13) for BC and −0.30 (p = 0.19) for PM2.5. For
the winter, correlations between PM2.5 and BC concentrations with in-
creasing distance from industry were −0.31 (p = 0.17) for BC and
−0.10 (p = 0.66) for PM2.5. Outdoor estimates from LUR models were
correlated most strongly with BC during winter (r = 0.34), suggesting
industrial influence consistent with previous work (Table 2) (Fig. 2).

3.4. Indoor questionnaire covariates

During summer, PM2.5 concentrations positively correlated with
stovetop frying (r = 0.47) and cooking activity (r = 0.41). Higher con-
centrationswere found in homes reportingmore cigarettes smoking. BC
correlated with time spent cooking (r = 0.41), and higher absorbance
values were found in homes reporting more cigarettes smoking. Poten-
tialmodifiers, such as frequency of openwindows (r=0.30) and the I/O
sulfur ratio (r = 0.56) positively correlated with BC.

During winter indoor sampling periods, PM2.5 concentrations were
positively correlated with frequency of cleaning the kitchen (r = 0.36)
and stovetop frying (r = 0.32). Higher concentrations were found in
homes reporting more cigarettes smoking and more children in the
home. Potential modifiers, such as open windows (r = 0.37) and the
I/O sulfur ratio (r=0.58) positively correlatedwith PM2.5. BC correlated
with stovetop frying (r = 0.40), as well as a potential modifier such as
I/O sulfur ratio (r = 0.53) (Table 2).

3.5. Multivariate linear regression model building

Candidate covariates were selected from the correlations shown in
Table 2 using the criteria of p b 0.20. All models contained a predicted
outdoor concentration estimate multiplied by the I/O sulfur ratio, as
an outdoor infiltration term. This term explained 10 to 42% of PM2.5

and BC variability across models. For the summer, the final multivariate
model for PM2.5 (R2 = 0.52) included number of cigarettes smoked in
the home and stovetop frying. The final model for BC (R2 = 0.50) in-
cluded the number of cigarettes smoked (Table 3).



Table 2
Univariate analysis of outdoor concentration indicators and indoor source indicators correlated with pollutants. Correlations ≥ 0.30 are in bold (p b 0.20).

Summer 2011⁎ Winter 2012

Covariate PM2.5 BC PM2.5 BC

r (p) r (p) r (p) r (p)

Outdoor concentration indicators:
LUR predicted PM2.5 estimate 0.11 (0.65) 0.13 (0.58) 0.20 (0.38) 0.05 (0.83)
LUR predicted BC estimate 0.10 (0.68) 0.14 (0.54) 0.34 (0.13) 0.28 (0.21)
Reference site PM2.5 concentration 0.07 (0.78) 0.17 (0.45) 0.05 (0.83) 0.18 (0.44)
Reference site BC absorbance 0.15 (0.53) 0.07 (0.78) 0.28 (0.22) 0.20 (0.38)
Distance to steel mill −0.30 (0.19) −0.35 (0.13) −0.10 (0.66) −0.31 (0.17)
PM2.5 emissions IDW 0.10 (0.68) 0.02 (0.93) 0.27 (0.23) 0.16 (0.49)
PM2.5 emissions/distance to steel mill 0.22 (0.35) 0.35 (0.12) 0.47 (0.03) 0.25 (0.27)

Indoor source indicators:
Time spent cooking 0.41 (0.07) 0.41 (0.07) −0.04 (0.85) 0.15 (0.51)
Frequency of stove frying 0.47 (0.04) 0.29 (0.20) 0.32 (0.15) 0.40 (0.07)
Frequency of cleaning the kitchen 0.27 (0.24) 0.08 (0.72) 0.36 (0.10) 0.29 (0.20)
Potential modifiers:
Frequency of open windows −0.19 (0.42) 0.30 (0.20) 0.37 (0.10) 0.19 (0.40)
Sulfur I/O ratio 0.08 (0.74) 0.56 (0.01) 0.58 (0.01) 0.53 (0.01)

Categorical indoor source indicators:

Covariate PM2.5 BC PM2.5 BC

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

# Cigarettes smoked – – – –
No cigarettes 19.19 (4.55) 2.58 (0.99) 15.96 (8.48) 3.61 (1.69)
1–4 cigarettes per day 31.32 (4.32) 3.21 (1.67) 27.00 (−) 2.20 (−)
N4 cigarettes per day – 4.99 (−) 36.75 (3.45) 3.32 (1.28)

# Children in home – – – –
0–1 17.41 (5.41) 2.48 (1.07) 12.21 (4.77) 1.54 (1.00)
2–3 22.33 (7.60) 2.94 (1.10) 20.70 (11.17) 2.74 (1.35)
4–5 31.28 (13.37) 3.44 (2.31) 33.83 (14.31) 3.16 (1.56)

⁎ An outlier (PM2.5 = 121 μg/m3) was removed for summer 2011 PM2.5 analyses.
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For thewinter, the finalmultivariatemodel for PM2.5 (R2= 0.61) in-
cluded number of cigarettes smoked. The finalmodel for BC (R2=0.70)
was driven by outdoor infiltration and included the predicted outdoor
estimates modified by the frequency of open windows (Table 4).

4. Discussion

Our results highlight the importance of both infiltration of outdoor
pollutant concentrations and indoor sources, especially smoking, on in-
door exposures in industrial communities. We hypothesized that out-
door concentrations would be strong predictors for our indoor models.
For both the summer and winter indoor BC models and the winter
PM2.5 model, outdoor estimates modified by the I/O sulfur ratios ex-
plained at least 33% of the variability found in indoor concentrations.
We hypothesized smoking to be the most predictive indoor pollution
Table 3
Summer 2011 multivariate model covariates and model fits for pollutants.

Multivariate model

Covariates β p-Value

Summer PM2.5 (μg/m3)b Intercept −11.96 0.67
Outdoor PM2.5 estimate ∗ I/O sulfur ratio 2.29 0.18
Cigarettes smoked – –
1–4 cigarettes 8.40 0.05
No cigarettes 0 –

Frequency of stove frying 0.99 0.02
Summer BC (abs) Intercept 3.97 0.001

Outdoor BC estimate ∗ I/O sulfur ratio 0.22 0.01
Cigarettes smoked – –
N4 cigarettes 2.11 0.04
1–4 cigarettes 1.51 0.16
No cigarettes 0 –

a Seq R2 is the sequential model fit for each additional term incorporated into model.
b One outlier was removed for PM modeling.
source, which was corroborated in both summer PM2.5 and BC models,
as well as the winter PM2.5 model. Outdoor infiltration explained mod-
erate variability in indoor PM2.5 and BC concentrations, yet smoking
contributed to higher concentration increases. In both seasons, indoor
concentrations for both PM2.5 and BC were consistently higher than
residence-specific outdoor concentration estimates.

For seasonal differences in PM2.5, other studies found lower PM con-
centrations during summermonths compared towinter (Leaderer et al.,
1999; Hazenkamp-Von Arx et al., 2004). We found slightly higher in-
door PM2.5 concentrations during the summer, though the difference
was not statistically significant. BC absorbance levels did not differ by
season.

Smoking is an important source of fine and coarse particulatematter
indoors (Wallace, 1996), and was the strongest predictor for both sum-
mer and winter PM2.5 models. Wallace (1996) had found estimated
RMSE VIF IQR of source indicator Conc. increase per source indicator Seq R2a

– – – – –
7.93 0.61 2.03 4.65 0.10
– – 1 – –
– – – 8.40 –
6.73 0.82 – – 0.33
5.86 0.62 4.5 4.46 0.52
– – – – –
0.99 0.99 2.51 0.55 0.33
– – 1 – –
– – – 2.11 –
– – – 1.51 –
0.90 0.28 – – 0.50



Table 4
Winter 2012 multivariate model covariates and model fits for pollutants.

Multivariate model

Covariates β p-value RMSE VIF IQR of source indicator Conc. increase per source indicator Seq R2

Winter PM2.5 (μg/m3) Intercept 24.21 0.004 – – – – –
Outdoor PM2.5 estimate ∗ I/O sulfur 0.76 0.002 10.51 0.97 10.33 7.85 0.39
Cigarettes smoked – – – – 1 – –

N4 cigarettes 17.12 0.02 – – – 17.12 –
1–4 cigarettes 1.00 0.93 – – – 1.00 –
No cigarettes 0 – 8.87 0.68 – – 0.61

Winter BC (abs) Intercept 1.89 0.02 – – – – –
Outdoor BC estimate ∗ I/O sulfur 0.34 0.24 1.06 0.38 1.34 1.11 0.42
Windows open – – – – 1 – –

1–4 h 1.77 0.05 – – – 1.77 –
b1 h 0 – 1.04 0.22 – – 0.46

Outdoor BC estimate ∗ windows open – – – – 1 – –
1–4 h 1.50 0.002 – – 1.50 –
b1 h 0 – 0.81 0.32 – – 0.70
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increases in PM2.5 in homes with smokers ranging from 25 to 45 μg/m3

(Wallace, 1996). Most residents who smoked reported 1–4 cigarettes
per day in the home, which conferred significant increases in indoor
Fig. 2. Summer and winter PM2.5 and BC indoor conce
PM2.5 concentrations. For summer PM2.5, stovetop frying was also an
important contributor to indoor pollution. We identified little outdoor
contributions in the summer andmoderate contributions in the winter,
ntrations overlaid with LUR predicted estimates.
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as our outdoor estimates modified by I/O sulfur ratios explained 10 to
39% of variability in indoor concentrations.

For both seasons in BC models, we were able to identify an outdoor
contribution to indoor pollution based on outdoor BC estimates modi-
fied by I/O sulfur concentrations. Smoking was a significant predictor
for summer BC variability, but not winter. For the summer, variability
in BCwas explained by outdoor BC and sulfur I/O ratios, aswell as num-
ber of cigarettes smoked. Smoking and frying food both emit particu-
lates, including black carbon, however, cooking predictors were not
significant in either BC seasonal model (Wallace, 1996). A study in Bos-
ton found that indoor BC was associated with an outdoor measure of
local traffic (Baxter et al., 2007a); we may be finding a similar associa-
tion between indoor BC and outdoor measures based on industrial
activity. Reinforcing the significance of outdoor BC and sulfur ratios as
a strong predictor for BC, indoor BC was higher when windows were
opened for greater than 12 h per day (mean BC = 3.15 (SD = 0.76
abs)), compared to windows open for less than 1 h per day (mean
BC = 2.24 (SD = 1.22 abs)). In the final summer model, our outdoor
predicted estimates and sulfur ratios were stronger predictors com-
pared to open windows. The importance of outdoor infiltration in in-
dustrial communities was highlighted during winter BC. For the
winter, variability in BC was solely explained by outdoor estimates
and modifiers, including I/O ratios and frequency of open windows.

Using residence-specific indicators and outdoor concentrations at
EPA sites, median pollutant I/O ratios were greater than 1.0, indicating
higher concentrations inside the home than outside. Many studies
have had contrasting results, finding low or high correlations between
indoor and outdoor pollutant concentrations when sampling inside
and directly outside of homes (Adgate et al., 2002; Ramachandran
et al., 2000; ALA, 2013). Levy et al. (2002) and Morawska et al. (2001)
identified moderate to high (I/O) pollutant ratios (Morawska et al.,
2001; Levy et al., 2002), whereas using residence-specific outdoor con-
centration estimates, our correlations between indoor and outdoor pol-
lutant concentrations were low (r b 0.28), resulting in similar findings
reported in Riverside, California (Ozkaynak et al., 1996).

This study builds upon other literature (Lioy, 2010), showing that
daily activity patterns, such as smoking or openingwindows, are impor-
tant to adequately characterize indoor residential exposures. A strength
of this indoor air sampling study is that it allowed us to determine in-
door weekly pollutant concentrations across homes near active indus-
trial sites using a simple air sampling device; little maintenance of the
units was required (the PEM only needed to be changed to avoid filter
overload). One-hundred percent retention of sampling homes was
achieved, so direct seasonal comparisons could be made. The question-
naire allowed for assessment of indoor pollutant concentrations across a
multitude of covariates that could be used in multivariate linear regres-
sion modeling.

One limitation was the sample size of only 21 homes; 56% of partic-
ipants in the small asthmatic cohort from the industrial communities of
Braddock and Clairton elected to take part in the indoor air sampling.
Another limitation was the inability to directly collect outdoor concen-
trations at the homes, thoughwe believe our seasonally-specific LUR es-
timates are reasonably sufficient, as LUR models predicted 64 to 86% of
outdoor variability of pollutant concentrations across Pittsburgh (Tunno
et al., 2015). Outdoormeasurementswere taken using portable air sam-
ples across randomly distributed locations during both the summer and
wintermonthswhile indoor samplingwas occurring, so there isn't a dif-
ference in time between our indoor measurements and outdoor-
derived estimates. Unfortunately, wewere unable to collect information
on the house, such as the year built. Data primarily allowed us to gain an
understanding of the complexity of indoor pollution exposures, and to
estimate the outdoor contribution to indoor pollution through using
outdoor concentration estimates from our published models (Tunno
et al., 2015).

Better understanding exposures is an important public health need,
as lower income communities are often clustered near industrial sites,
potentially resulting in highly elevated residential exposures. Contrary
to the initial hypothesis, outdoor concentrations accounted for low to
moderate variability in indoor concentrations; amuch greater proportion
was explained by cigarette smoking in three of the four models (Tables 3
and 4). Our results showed that, even in industrial communities of high
outdoor pollution concentrations, indoor activities – particularly cigarette
smoking –may play a larger role in shaping indoor PM2.5 exposures. Out-
door infiltration from nearby industrial facilities, combined with indoor
smoking, is an important public health issue. The results of this study
were reported to residents with the aim of reducing daily activities that
lead to increased indoor exposures.
5. Conclusions

Smoking was the most significant identified contributor to indoor air
pollution, and outdoor-derived estimates and sulfur I/O ratios explained
a portion of the outdoor contribution to indoor pollution. Median I/O ra-
tios indicated higher PM2.5 and BC concentrations indoors than outdoors,
even in these homes located near large active industrial sources. Slightly
higher indoor PM2.5 concentrations were found during the summer com-
pared to thewinter. This studywas informative to parents, indicating that
daily activities in the home, such as smoking, can result in higher concen-
trations of PM2.5. Though outdoor pollution cannot be ignored and
certainly contributes to indoor air pollution levels, indoor activities like
smoking appear to be stronger sources of PM2.5 concentrations compared
to outdoor concentrations, even in these industrial communities. The
combination of outdoor infiltration from nearby industry and indoor
smoking is important to public health.
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