13 research outputs found

    Diffuse Axonal Injury: A Devastating Pathology

    Get PDF
    Traumatic brain injury (TBI) also known as intracranial injury is the result of a lesion within the brain due to an external force. Common forms of TBI result from falls, violence, and/or vehicle crashes; the classification of this pathology is dependent on the severity of the lesion as well as the mechanism of trauma to the head. One of the most common onsets of traumatic brain injuries result from mild to severe lesions to the white matter tracts of the brain called diffuse axonal injury (DAI); however, additional forms of TBI’s can present in non-penetrating forms. Penetrating forms of TBI’s such as trauma to the head via a foreign object do also contribute to the many millions of TBI cases per year, but we will not discuss these traumatic injuries as in depth within this chapter. The onset of diffuse axonal injury will vary on a per-patient basis from mild to severe, based on a standardized neurological examination rated on the Glasgow Coma Scale (GCS), which indicates the severity of brain damage present. While there is a spectrum of severity for DAI patients, a concussion is typically observed within a larger majority of patients in addition to other overwhelming trauma

    Management of Intracranial Pressure in Traumatic Brain Injury

    Get PDF
    Traumatic brain injury (TBI) is the result of an external force acting upon the head, causing damage to the brain. The severity of injury, mechanism by which the injury occurs, and the frequency of the high-force impact all play a role in the determination of a TBI. TBI describes a wide range of traumatic pathologies which is comprised of damage done to a multitude of cranial central nervous system components. TBI patients typically present with a series of symptoms are correlated with the presence of an intracranial injury, such as physical/cognitive difficulties. A major concern associated with intracranial injuries is the management of intracranial pressure (ICP), a resulting factor of a TBI which facilitates into intracranial hematoma and/or cerebral edema. These conditions have adverse effects on one’s brain, and the immediate management and relief of intracranial pressure are crucial in avoiding hydrocephalus and brain herniation, conditions which lead to sensory loss and even death. In this chapter, we will begin by thoroughly understanding what a TBI is, its clinical presentation, and the first-tier examination to determine severity. Then, we will progress into the anatomy of the brain, followed by a thorough investigation into intracranial pressure management strategies and prognosis

    Management Strategies and Outcomes for VHL-related Craniospinal Hemangioblastomas

    Get PDF
    Hemangioblastomas are rare and benign tumors accounting for less than 2% of all central nervous system (CNS) tumors. The vast majority of hemangioblastomas occur sporadically, whereas a small number of cases, especially in younger patients, are associated with Von Hippel–Lindau (VHL) syndrome. It is thought that loss of tumor suppressor function of the VHL gene results in stabilization of hypoxia-inducible factor alpha with downstream activation of cellular proliferative and angiogenic genes that promote tumorigenesis. VHL-related hemangioblastomas predominantly occur in the cerebellum and spine. Lesions are often diagnosed on contrast-enhanced craniospinal MRIs, and the diagnosis of VHL occurs through assessment for germline VHL mutations. Surgical resection remains the primary treatment modality for symptomatic or worrisome lesions, with excellent local control rates and neurological outcomes. Stereotactic radiotherapy can be employed in patients who are deemed high risk for surgery, have multiple lesions, or have non-resectable lesions. Given the tendency for development of either new or multiple lesions, close radiographic surveillance is often recommended for asymptomatic lesions

    Intracranial Myeloid Sarcoma Metastasis Mimicking Acute Subdural Hematoma

    Get PDF
    Myeloid sarcoma, a rare consequence of myeloproliferative disorders, is rarely seen in the central nervous system, most commonly in the pediatric population. Although there are a handful of case reports detailing initial presentation of CNS myeloid sarcoma in the adult population, we have been unable to find any reports of CNS myeloid sarcoma presenting as a large mass lesion in a herniating patient. Here, we present the case of a patient transferred to our facility for a very large subdural hematoma. Based on imaging characteristics, it was felt to be a spontaneous hematoma secondary to coagulopathy. No coagulopathy was found. Interestingly, he did have a history of acute myeloid leukemia (AML) diagnosed 2 months previously, and intraoperatively he was found to have a confluent white mass invading both the subdural and subarachnoid spaces. There was minimal associated hemorrhage and final pathology showed myeloid sarcoma. This is the first report we are aware of in which CNS myeloid sarcoma presented as a subdural metastasis and also the first report in which we are aware of this etiology causing a herniation syndrome secondary to mass effect

    Unusual Case of Metastatic Gastrointestinal Adenocarcinoma to the Cervical Spine without a Detectable Primary Source in a Patient with Acquired Immunodeficiency Syndrome: A Case Report

    Get PDF
    The authors report a case of metastatic gastrointestinal adenocarcinoma to the cervical spine in a patient with acquired immunodeficiency syndrome (AIDS) being treated with antiretroviral therapy. The source of this tumor could not be identified despite a thorough evaluation. A 49-year-old male being treated for AIDS presents with worsening neck pain and left distal arm weakness. MRI demonstrated an erosive mass within the cervical four vertebral body extending through the pedicle on the left side. Patient underwent needle biopsy followed by combined anterior and posterior fusion procedures. Pathology demonstrated metastatic gastrointestinal adenocarcinoma without known primary origin. He is currently undergoing palliative radiotherapy. This is an unusual case of metastatic gastrointestinal adenocarcinoma to the cervical spine. This should be included on the differential diagnosis of spinal lesions in this patient population and may represent a unique tumor in patients with HIV/AIDS who are on immunosuppressive therapy

    Management Strategies and Outcomes for VHL-related Craniospinal Hemangioblastomas

    Get PDF
    <p>Hemangioblastomas are rare and benign tumors accounting for less than 2% of all central nervous system (CNS) tumors. The vast majority of hemangioblastomas occur sporadically, whereas a small number of cases, especially in younger patients, are associated with Von Hippel–Lindau (VHL) syndrome. It is thought that loss of tumor suppressor function of the VHL gene results in stabilization of hypoxia-inducible factor alpha with downstream activation of cellular proliferative and angiogenic genes that promote tumorigenesis. VHL-related hemangioblastomas predominantly occur in the cerebellum and spine. Lesions are often diagnosed on contrast-enhanced craniospinal MRIs, and the diagnosis of VHL occurs through assessment for germline VHL mutations. Surgical resection remains the primary treatment modality for symptomatic or worrisome lesions, with excellent local control rates and neurological outcomes. Stereotactic radiotherapy can be employed in patients who are deemed high risk for surgery, have multiple lesions, or have non-resectable lesions. Given the tendency for development of either new or multiple lesions, close radiographic surveillance is often recommended for asymptomatic lesions.</p
    corecore