36 research outputs found

    Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification

    Get PDF
    Background HER2 is overexpressed and amplified in approximately 15% of invasive breast cancers, and is the molecular target and predictive marker of response to anti-HER2 agents. In a subset of these cases, heterogeneous distribution of HER2 gene amplification can be found, which creates clinically challenging scenarios. Currently, breast cancers with HER2 amplification/overexpression in just over 10% of cancer cells are considered HER2-positive for clinical purposes; however, it is unclear as to whether the HER2-negative components of such tumors would be driven by distinct genetic alterations. Here we sought to characterize the pathologic and genetic features of the HER2-positive and HER2-negative components of breast cancers with heterogeneous HER2 gene amplification and to define the repertoire of potential driver genetic alterations in the HER2-negative components of these cases.Results We separately analyzed the HER2-negative and HER2-positive components of 12 HER2 heterogeneous breast cancers using gene copy number profiling and massively parallel sequencing, and identified potential driver genetic alterations restricted to the HER2-negative cells in each case. In vitro experiments provided functional evidence to suggest that BRF2 and DSN1 overexpression/amplification, and the HER2 I767M mutation may be alterations that compensate for the lack of HER2 amplification in the HER2-negative components of HER2 heterogeneous breast cancers.Conclusions Our results indicate that even driver genetic alterations, such as HER2 gene amplification, can be heterogeneously distributed within a cancer, and that the HER2-negative components are likely driven by genetic alterations not present in the HER2-positive components, including BRF2 and DSN1 amplification and HER2 somatic mutations

    A genomic and transcriptomic approach for a differential diagnosis between primary and secondary ovarian carcinomas in patients with a previous history of breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The distinction between primary and secondary ovarian tumors may be challenging for pathologists. The purpose of the present work was to develop genomic and transcriptomic tools to further refine the pathological diagnosis of ovarian tumors after a previous history of breast cancer.</p> <p>Methods</p> <p>Sixteen paired breast-ovary tumors from patients with a former diagnosis of breast cancer were collected. The genomic profiles of paired tumors were analyzed using the Affymetrix GeneChip<sup>® </sup>Mapping 50 K Xba Array or Genome-Wide Human SNP Array 6.0 (for one pair), and the data were normalized with ITALICS (ITerative and Alternative normaLIzation and Copy number calling for affymetrix Snp arrays) algorithm or Partek Genomic Suite, respectively. The transcriptome of paired samples was analyzed using Affymetrix GeneChip<sup>® </sup>Human Genome U133 Plus 2.0 Arrays, and the data were normalized with gc-Robust Multi-array Average (gcRMA) algorithm. A hierarchical clustering of these samples was performed, combined with a dataset of well-identified primary and secondary ovarian tumors.</p> <p>Results</p> <p>In 12 of the 16 paired tumors analyzed, the comparison of genomic profiles confirmed the pathological diagnosis of primary ovarian tumor (n = 5) or metastasis of breast cancer (n = 7). Among four cases with uncertain pathological diagnosis, genomic profiles were clearly distinct between the ovarian and breast tumors in two pairs, thus indicating primary ovarian carcinomas, and showed common patterns in the two others, indicating metastases from breast cancer. In all pairs, the result of the transcriptomic analysis was concordant with that of the genomic analysis.</p> <p>Conclusions</p> <p>In patients with ovarian carcinoma and a previous history of breast cancer, SNP array analysis can be used to distinguish primary and secondary ovarian tumors. Transcriptomic analysis may be used when primary breast tissue specimen is not available.</p

    Genetic Heterogeneity in Therapy-Naïve Synchronous Primary Breast Cancers and Their Metastases

    Get PDF
    Purpose:; Paired primary breast cancers and metachronous metastases after adjuvant treatment are reported to differ in their clonal composition and genetic alterations, but it is unclear whether these differences stem from the selective pressures of the metastatic process, the systemic therapies, or both. We sought to define the repertoire of genetic alterations in breast cancer patients with; de novo; metastatic disease who had not received local or systemic therapy.; Experimental Design:; Up to two anatomically distinct core biopsies of primary breast cancers and synchronous distant metastases from nine patients who presented with metastatic disease were subjected to high-depth whole-exome sequencing. Mutations, copy number alterations and their cancer cell fractions, and mutation signatures were defined using state-of-the-art bioinformatics methods. All mutations identified were validated with orthogonal methods.; Results:; Genomic differences were observed between primary and metastatic deposits, with a median of 60% (range 6%-95%) of shared somatic mutations. Although mutations in known driver genes including; TP53, PIK3CA; , and; GATA3; were preferentially clonal in both sites, primary breast cancers and their synchronous metastases displayed spatial intratumor heterogeneity. Likely pathogenic mutations affecting epithelial-to-mesenchymal transition-related genes, including; SMAD4, TCF7L2; , and; TCF4; (; ITF2; ), were found to be restricted to or enriched in the metastatic lesions. Mutational signatures of trunk mutations differed from those of mutations enriched in the primary tumor or the metastasis in six cases.; Conclusions:; Synchronous primary breast cancers and metastases differ in their repertoire of somatic genetic alterations even in the absence of systemic therapy. Mutational signature shifts might contribute to spatial intratumor genetic heterogeneity

    Interrogating open issues in cancer precision medicine with patient-derived xenografts

    Full text link
    corecore