124 research outputs found

    Aptitude ou attitude? : prédicteurs de réussite en anglais, langue seconde, au collégial : rapport de recherche /

    Get PDF
    "Recherche subventionnée par le Programme de recherche et d'expérimentation du réseau collégial privé-subventionné (PREP)"Bibliographie: pages 173-175

    Aptitude ou attitude? : prédicteurs de réussite en anglais, langue seconde, au collégial

    Get PDF
    "Recherche subventionnée par le Programme de recherche et d'expérimentation du réseau collégial privé-subventionné (PREP)"Bibliographie: pages 173-175

    Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton

    Get PDF
    AbstractThe mammalian TOR (mTOR) pathway integrates nutrient- and growth factor-derived signals to regulate growth, the process whereby cells accumulate mass and increase in size. mTOR is a large protein kinase and the target of rapamycin, an immunosuppressant that also blocks vessel restenosis and has potential anticancer applications. mTOR interacts with the raptor and GÎČL proteins [1–3] to form a complex that is the target of rapamycin. Here, we demonstrate that mTOR is also part of a distinct complex defined by the novel protein rictor (rapamycin-insensitive companion of mTOR). Rictor shares homology with the previously described pianissimo from D. discoidieum[4], STE20p from S. pombe[5], and AVO3p from S. cerevisiae[6, 7]. Interestingly, AVO3p is part of a rapamycin-insensitive TOR complex that does not contain the yeast homolog of raptor and signals to the actin cytoskeleton through PKC1 [6]. Consistent with this finding, the rictor-containing mTOR complex contains GÎČL but not raptor and it neither regulates the mTOR effector S6K1 nor is it bound by FKBP12-rapamycin. We find that the rictor-mTOR complex modulates the phosphorylation of Protein Kinase C α (PKCα) and the actin cytoskeleton, suggesting that this aspect of TOR signaling is conserved between yeast and mammals

    Why alternative teenagers self-harm: exploring the link between non-suicidal self-injury, attempted suicide and adolescent identity

    Get PDF
    Background: The term ‘self-harm’ encompasses both attempted suicide and non-suicidal self-injury (NSSI). Specific adolescent subpopulations such as ethnic or sexual minorities, and more controversially, those who identify as ‘Alternative’ (Goth, Emo) have been proposed as being more likely to self-harm, while other groups such as ‘Jocks’ are linked with protective coping behaviours (for example exercise). NSSI has autonomic (it reduces negative emotions) and social (it communicates distress or facilitates group ‘bonding’) functions. This study explores the links between such aspects of self-harm, primarily NSSI, and youth subculture.<p></p> Methods: An anonymous survey was carried out of 452 15 year old German school students. Measures included: identification with different youth cultures, i.e. Alternative (Goth, Emo, Punk), Nerd (academic) or Jock (athletic); social background, e.g. socioeconomic status; and experience of victimisation. Self-harm (suicide and NSSI) was assessed using Self-harm Behavior Questionnaire and the Functional Assessment of Self-Mutilation (FASM).<p></p> Results: An “Alternative” identity was directly (r ≈ 0.3) and a “Jock” identity inversely (r ≈ -0.1) correlated with self-harm. “Alternative” teenagers self-injured more frequently (NSSI 45.5% vs. 18.8%), repeatedly self-injured, and were 4–8 times more likely to attempt suicide (even after adjusting for social background) than their non-Alternative peers. They were also more likely to self-injure for autonomic, communicative and social reasons than other adolescents.<p></p> Conclusions: About half of ‘Alternative’ adolescents’ self-injure, primarily to regulate emotions and communicate distress. However, a minority self-injure to reinforce their group identity, i.e. ‘To feel more a part of a group’

    A value-based comparison of the management of ambulatory respiratory diseases in walk-in clinics, primary care practices, and emergency departments : protocol for a multicenter prospective cohort study

    Get PDF
    Background: In Canada, 30%-60% of patients presenting to emergency departments are ambulatory. This category has been labeled as a source of emergency department overuse. Acting on the presumption that primary care practices and walk-in clinics offer equivalent care at a lower cost, governments have invested massively in improving access to these alternative settings in the hope that patients would present there instead when possible, thereby reducing the load on emergency departments. Data in support of this approach remain scarce and equivocal. Objective: The aim of this study is to compare the value of care received in emergency departments, walk-in clinics, and primary care practices by ambulatory patients with upper respiratory tract infection, sinusitis, otitis media, tonsillitis, pharyngitis, bronchitis, influenza-like illness, pneumonia, acute asthma, or acute exacerbation of chronic obstructive pulmonary disease. Methods: A multicenter prospective cohort study will be performed in Ontario and Québec. In phase 1, a time-driven activity-based costing method will be applied at each of the 15 study sites. This method uses time as a cost driver to allocate direct costs (eg, medication), consumable expenditures (eg, needles), overhead costs (eg, building maintenance), and physician charges to patient care. Thus, the cost of a care episode will be proportional to the time spent receiving the care. At the end of this phase, a list of care process costs will be generated and used to calculate the cost of each consultation during phase 2, in which a prospective cohort of patients will be monitored to compare the care received in each setting. Patients aged 18 years and older, ambulatory throughout the care episode, and discharged to home with one of the aforementioned targeted diagnoses will be considered. The estimated sample size is 1485 patients. The 3 types of care settings will be compared on the basis of primary outcomes in terms of the proportion of return visits to any site 3 and 7 days after the initial visit and the mean cost of care. The secondary outcomes measured will include scores on patient-reported outcome and experience measures and mean costs borne wholly by patients. We will use multilevel generalized linear models to compare the care settings and an overlap weights approach to adjust for confounding factors related to age, sex, gender, ethnicity, comorbidities, registration with a family physician, socioeconomic status, and severity of illness. Results: Phase 1 will begin in 2021 and phase 2, in 2023. The results will be available in 2025. Conclusions: The end point of our program will be for deciders, patients, and care providers to be able to determine the most appropriate care setting for the management of ambulatory emergency respiratory conditions, based on the quality and cost of care associated with each alternative

    A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    Aims Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC) is characterized by ventricular arrhythmias (VAs) and sudden cardiac death (SCD). We aimed to develop a model for individualized prediction of incident VA/SCD in ARVC patients.Methods and results Five hundred and twenty-eight patients with a definite diagnosis and no history of sustained VAs/SCD at baseline, aged 38.2 +/- 15.5 years, 44.7% male, were enrolled from five registries in North America and Europe. Over 4.83 (interquartile range 2.44-9.33) years of follow-up, 146 (27.7%) experienced sustained VA, defined as SCD, aborted SCD, sustained ventricular tachycardia, or appropriate implantable cardioverter-defibrillator (ICD) therapy. A prediction model estimating annual VA risk was developed using Cox regression with internal validation. Eight potential predictors were pre-specified: age, sex, cardiac syncope in the prior 6 months, non-sustained ventricular tachycardia, number of premature ventricular complexes in 24 h, number of leads with T-wave inversion, and right and left ventricular ejection fractions (LVEFs). All except LVEF were retained in the final model. The model accurately distinguished patients with and without events, with an optimism-corrected C-index of 0.77 [95% confidence interval (CI) 0.73-0.81] and minimal over-optimism [calibration slope of 0.93 (95% CI 0.92-0.95)]. By decision curve analysis, the clinical benefit of the model was superior to a current consensus-based ICD placement algorithm with a 20.6% reduction of ICD placements with the same proportion of protected patients (P &lt;0.001).Conclusion Using the largest cohort of patients with ARVC and no prior VA, a prediction model using readily available clinical parameters was devised to estimate VA risk and guide decisions regarding primary prevention ICDs (www.arvcrisk.com).</p

    The NANOGrav 15-Year Data Set: Detector Characterization and Noise Budget

    Get PDF
    Pulsar timing arrays (PTAs) are galactic-scale gravitational wave detectors. Each individual arm, composed of a millisecond pulsar, a radio telescope, and a kiloparsecs-long path, differs in its properties but, in aggregate, can be used to extract low-frequency gravitational wave (GW) signals. We present a noise and sensitivity analysis to accompany the NANOGrav 15-year data release and associated papers, along with an in-depth introduction to PTA noise models. As a first step in our analysis, we characterize each individual pulsar data set with three types of white noise parameters and two red noise parameters. These parameters, along with the timing model and, particularly, a piecewise-constant model for the time-variable dispersion measure, determine the sensitivity curve over the low-frequency GW band we are searching. We tabulate information for all of the pulsars in this data release and present some representative sensitivity curves. We then combine the individual pulsar sensitivities using a signal-to-noise-ratio statistic to calculate the global sensitivity of the PTA to a stochastic background of GWs, obtaining a minimum noise characteristic strain of 7×10−157\times 10^{-15} at 5 nHz. A power law-integrated analysis shows rough agreement with the amplitudes recovered in NANOGrav's 15-year GW background analysis. While our phenomenological noise model does not model all known physical effects explicitly, it provides an accurate characterization of the noise in the data while preserving sensitivity to multiple classes of GW signals.Comment: 67 pages, 73 figures, 3 tables; published in Astrophysical Journal Letters as part of Focus on NANOGrav's 15-year Data Set and the Gravitational Wave Background. For questions or comments, please email [email protected]
    • 

    corecore