380 research outputs found

    Changing the Game: Civic Leadership at The Boston Foundation, 2001-2012

    Get PDF
    In Changing the Game, Paul S. Grogan, President and CEO of The Boston Foundation, traces the development of The Boston Foundation's civic leadership model and the Foundation's evolution into a powerfully engaged, influential player in Boston and across Massachusetts, and suggests approaches that other foundations can adapt to use to achieve comparable results. Grogan describes the changes The Boston Foundation has undergone during the twelve years of his leadership. He elucidates the Foundation's new approach to effecting community change, including expanded staff capacity, a greater reliance on data and research, a proactive relationship with local media, greater and more consistent public sector engagement, and fundraising efforts broadened to include operational support for the Foundation's work. He examines in detail the Foundation's research-driven efforts to improve housing and education policy in Greater Boston

    Five years of winter climate change-related research in the Canadian low Arctic: What have we learned?

    Get PDF
    The importance of the fall, winter and spring periods to ecosystem functioning and biogeochemical cycling in tundra has only become apparent in the past two decades. Our research group has been conducting winter climate change-related studies at a low arctic tundra site near Daring Lake, north of Yellowknife in northern Canada for the past five years. Most of these studies have focused on the biogeochemical interactions between plants, soils, and soil microbes during fall, winter and spring, and on their responses to experimentally deepened snow. In addition, we have measured trace gas production and isotopic nitrogen tracer distributions among plant and soil components in several vegetation-types. The central goal has been to understand the potential importance of cold season soil N transformation processes to ecosystem-level biogeochemistry during the subsequent plant growing season, and then to develop predictions of how changes in winter climate may impact these seasonal processes. In this talk, I will present a synthesis of those studies, emphasizing temperature-moisture interactions, and highlighting future research priorities

    Collaboration and complexity: an experiment on the effect of multi-actor coupled design

    Get PDF
    Design of complex systems requires collaborative teams to overcome limitations of individuals; however, teamwork contributes new sources of complexity related to information exchange among members. This paper formulates a human subjects experiment to quantify the relative contribution of technical and social sources of complexity to design effort using a surrogate task based on a parameter design problem. Ten groups of 3 subjects each perform 42 design tasks with variable problem size and coupling (technical complexity) and team size (social complexity) to measure completion time (design effort). Results of a two-level regression model replicate past work to show completion time grows geometrically with problem size for highly coupled tasks. New findings show the effect of team size is independent from problem size for both coupled and uncoupled tasks considered in this study. Collaboration contributes a large fraction of total effort, and it increases with team size: about 50–60 % of time and 70–80 % of cost for pairs and 60–80 % of time and 90 % of cost for triads. Conclusions identify a role for improved design methods and tools to anticipate and overcome the high cost of collaboration.American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshi

    An integrated modeling framework for infrastructure system-of-systems simulation

    Get PDF
    Design of future hard infrastructure must consider emergent behaviors from cross-system interdependencies. Understanding these interdependencies is challenging due to high levels of integration in high-performance systems and their operation as a collaborative system-of-systems managed by multiple organizations. Existing modeling frameworks have limitations for strategic planning either because important spatial structure attributes have been abstracted out or behavioral models are oriented to shorter-term analysis with a static network structure. This paper presents a formal modeling framework as a first step to integrating infrastructure system models in a system-of-systems simulation addressing these concerns. First, a graph-theoretic structural framework captures the spatial dimension of physical infrastructure. An element's simulation state includes location, parent, resource contents, and operational state properties. Second, a functional behavioral framework captures the temporal dimension of infrastructure operations at a level suitable for strategic analysis. Resource behaviors determine the flow of resources into or out of nodes and element behaviors modify other state including the network structure. Two application use cases illustrate the usefulness of the modeling framework in varying contexts. The first case applies the framework to future space exploration infrastructure with an emphasis on mobile system elements and discrete resource flows. The second case applies the framework to infrastructure investment in Saudi Arabia with an emphasis on immobile system elements aggregated at the city level and continuous resource flows. Finally, conclusions present future work planned for implementing the framework in a simulation software tool.American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshi

    Federated Simulation and Gaming Framework for a Decentralized Space-Based Resource Economy

    Get PDF
    Future human space exploration will require large amounts of resources for shielding and building materials, propellants, and consumables. A space-based resource economy could produce, transport, and store resource at distributed locations such as the lunar surface, stable orbits, or Lagrange points to avoid Earth's deep gravity well. Design challenges include decentralized operation and management and socio-technical complexities not commonly addressed by modeling and simulation methods. This paper seeks to tackle these challenges by applying aspects of military wargaming to promote effective communication between decision-makers. A software architecture for federated simulation based on IEEE-1516 (HLA-Evolved) is presented in the context of multiple lunar in-situ resource production processes, resource depots, and intermediate transportation. The federation-level framework identifies interfaces between simulation models (federates), focusing on persistent assets (elements) and resources exchanged. Future work will develop the federated resource economy model and evaluate with decision-makers playing the roles of competing and collaborating players.United States. Dept. of DefenseUnited States. Air Force Office of Scientific ResearchAmerican Society for Engineering Education. National Defense Science and Engineering Graduate Fellowship (32 CFR 168a

    Strategic Engineering Gaming for Improved Design and Interoperation of Infrastructure Systems

    Get PDF
    Large physical networks of interrelated infrastructure components support modern societies as a collaborative system with significant technical and social complexity. Design and evolution of infrastructure systems seeks to reduce wasted resources and maximize lifecycle value. Interdependencies between constituent systems call for an integrative approach to improve interoperation but many existing techniques rely on centralized development and emphasize technical aspects of design. This paper presents a simulation gaming approach to collaborative infrastructure system design leveraging the technical strengths of simulation models and the social strengths of multi-player engagement in a game execution. In a strategic engineering game, models representing each constituent infrastructure system share a common graph-theoretic modeling framework and are integrated using the HLA-Evolved standard for interoperable federated simulations. A prototype game instantiation based on a space-based resource economy supporting future space exploration is discussed with the objective of identifying how factors of game play influence insights to collaborative system design. Future work seeks to develop, execute, and evaluate the prototype game to further research the use of simulation games in supporting collaborative system design

    Effects of Individual Strategies for Resource Access on Collaboratively Maintained Irrigation Infrastructure

    Get PDF
    Built infrastructure for water and energy supply, transportation, and other such services underpins human well-being and socioeconomic development. A fundamental understanding of how infrastructure design and user strategies interact can guide important design decisions as well as policy formulation for ensuring long-term infrastructure viability in conjunction with improved individual user benefits. In this work, an agent based model (ABM) is developed to study this issue for the specific case of irrigation canals. Cooperatively maintained irrigation canals serve essential roles in sustaining agriculture-based economies in many regions. Canal system design can strongly affect benefits derived by distributed users, regional agricultural output, and the long-term viability of the shared infrastructure itself. Here, an ABM is used to investigate how an option to use an independent water source interacts with canal design to affect canal maintenance cooperation and farmer income. The independent water source is stylized as a well that provides access to groundwater and represents a strategically robust design option; a design option that reduces the implementer\u27s utility vulnerability to unfavorable actions by other actors. Research in other systems has demonstrated that strategically robust designs can improve both implementer utility and the probability of collaboration. The results of this research, in contrast, demonstrate that the option of individual resource access, the strategically robust design option, as represented by a well, reduces cooperative maintenance in most cases. However, wells also improve farmer income, especially for downstream farmers that are most affected by water theft

    Comparative Usability Study of Two Space Logistics Analysis Tools

    Get PDF
    Future space exploration missions and campaigns will require sophisticated tools to help plan and analyze logistics. To encourage their use, space logistics tools must be usable: a design concept encompassing terms such as efficiency, effectiveness, and satisfaction. This paper presents a usability study of two such tools: SpaceNet, a discrete event simulation tool and a comparable spreadsheet-based tool. The study follows a randomized orthogonal design having within-subjects evaluation of the two tools with 12 volunteer subjects (eight subjects with space backgrounds, four without). Each subject completed two sessions of testing, each with a 30-45 minute tutorial and a two-part space exploration scenario. The first part tests the creation a model to verify a simple uncrewed mission to lunar orbit. The second part tests the evaluation of an existing model to improve the effectiveness of a crewed mission to the lunar surface. The subjects completed a questionnaire after each session and a semi-structured interview following the second session. The study results indicate that the SpaceNet tool is more efficient for portions of the model creation task including modeling multi-burn transports and the spreadsheet tool is more effective for the model evaluation task. Qualitative evaluation indicates subjects liked the graphical nature and error-detection of the SpaceNet tool, but felt it took too long to edit information and appeared as a “black box.” Subjects liked the ability to view the entire model state within the spreadsheet tool, however were concerned with limited dynamic state feedback and underlying modeling assumptions. Future tools should combine the best features, including allowing modification of the entire model from a single interface, providing visibility of underlying logic, and integrated graphical and error-checking feedback.United States. Dept. of DefenseUnited States. Air Force Office of Scientific ResearchAmerican Society for Engineering Education. National Defense Science and Engineering Graduate Fellowship32 CFR 168aSamsung Fellowshi
    • …
    corecore