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Abstract Design of complex systems requires collabo-

rative teams to overcome limitations of individuals; how-

ever, teamwork contributes new sources of complexity

related to information exchange among members. This

paper formulates a human subjects experiment to quantify

the relative contribution of technical and social sources of

complexity to design effort using a surrogate task based on

a parameter design problem. Ten groups of 3 subjects each

perform 42 design tasks with variable problem size and

coupling (technical complexity) and team size (social

complexity) to measure completion time (design effort).

Results of a two-level regression model replicate past work

to show completion time grows geometrically with prob-

lem size for highly coupled tasks. New findings show the

effect of team size is independent from problem size for

both coupled and uncoupled tasks considered in this study.

Collaboration contributes a large fraction of total effort,

and it increases with team size: about 50–60 % of time and

70–80 % of cost for pairs and 60–80 % of time and 90 %

of cost for triads. Conclusions identify a role for improved

design methods and tools to anticipate and overcome the

high cost of collaboration.

Keywords Collaborative design � Complexity � Design
theory � Parameter design � Systems engineering

1 Introduction

System design requires teams of people to work together to

overcome individual limitations on cognition and knowl-

edge (Arias et al. 2000). Teamwork produces multifaceted

effects including benefits from parallel work flows, multi-

ple perspectives on the problem, and specialization, but

also impediments from feedback delays, misalignment of

objectives, and poor group dynamics (Cohen and Bailey

1997; Kerr and Tindale 2004). While efficiency demands

separation of knowledge, shared understanding improves

performance in simultaneous tasks or when specialties are

hard to advance, difficult to explain, or highly constrained

(Postrel 2002).

Engineering organizations employ systems engineering

(SE) as a structured process to achieve system require-

ments while distributing design work among large teams of

various disciplines (Haskins 2011). SE activities iteratively

flow requirements down to detailed design levels and

integrate realized products up to the system level (National

Aeronautical and Space Administration 2007). While

model-based methods are in development (e.g., Friedenthal

et al. 2012), most current SE practices use documents such

as requirements and interface control specifications to

exchange information across design levels.

The large scale and scope of systems projects introduce

significant sources of complexity broadly interpreted as

uncertainty in meeting requirements (Suh 1999). Tradi-

tional SE activities attempt to minimize social sources of

complexity with strong centralized control to define inter-

faces and enforce trade-offs. Newer concepts such as sys-

tem-of-systems allow greater degrees of operational and

managerial independence among constituent systems

(Maier 1998) and require a federated approach with greater

degrees of autonomy (Sage and Cuppan 2001).
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Collaborative design challenges traditional SE practices

to structure technical design activities among a team of

stakeholders or decision makers with independent or

competing objectives (Lu et al. 2007). Its study goes

beyond most existing engineering research to consider both

technical and social features of design. As an initial step to

characterize broader sources of complexity, this paper

quantifies and compares the relative costs of technical and

social complexity using empirical data from a human

subjects experiment. Understanding the fundamental costs

to collaboration will help motivate and assess new methods

to accommodate distributed authority in design.

2 Background and research objectives

2.1 Complexity in design

Despite decades of SE practice and experience, large

engineering projects face continued effort overruns on cost

and schedule. This behavior seems to be independent of

domain, time, and geography, as evidenced by numerous

examples:

• 47 of 134 major US defense acquisition programs

between 1997 and 2009 had a total of 74 cost breaches

triggering congressional action (US Government

Accountability Office 2011),

• 13 of 40 NASA Earth and space science missions

between 1989 and 2010 experienced excessive cost

growth with average growth exceeding 20 % (National

Research Council 2010),

• A global analysis of 258 infrastructure and public works

projects between 1910 and 1998 shows an average of

28 % cost growth (Flyvbjerg et al. 2002), and

• An analysis of 10 surveys on software effort estimation

between 1984 and 2002 finds most projects (60–80 %)

encounter effort or schedule overruns on the order of

30–40 % (Moløkken and Jørgensen 2003).

These studies attribute effort overruns to various factors

including engineering and design issues, schedule issues,

and quantity changes (US Government Accountability

Office 2011), optimistic and unrealistic estimates, project

instability, and funding issues (National Research Council

2010), and strategic misrepresentation (Flyvbjerg et al.

2002).

More broadly, project management literature attributes

effort overruns to positive feedback structures in complex

dynamic systems (Lyneis et al. 2001), the most dominant

being rework with associated factors for productivity and

work quality (Cooper et al. 2002). Conventional project

management methods may trigger these feedback effects in

large or interdependent, uncertain, and time-constrained

projects due to complex and counterintuitive behaviors

(Williams 2005).

A unifying perspective broadly views complexity as

uncertainty inmeeting desired functional requirementswithin

specified constraints (Suh 1999). More complex designs have

a greater chance to exceed constraints for a fixed set of

requirements compared to simpler ones, even though com-

plexity may enable other desired features. For example,

complexity from performance characteristics and airframe

materials is a major source of cost escalation in fixed-wing

aircraft but also enables lower weight, higher speed, and

advanced capabilities (Arena et al. 2008). More general

sources of complexity include structural and behavioral

design features, contextual and temporal factors outside the

control of designers, and perceptual factors related to stake-

holder preferences and biases (Rhodes and Ross 2010).

Measurement and management of complexity may

improve estimates of design effort (Bashir and Thomson

2001) and reduce overruns. A large body of literature

defines and quantifies complexity in system design (e.g.,

Braha and Maimon 1998b; Bashir and Thomson 1999; El-

Haik and Yang 1999; Ameri et al. 2008; Summers and

Shah 2010). Most metrics consider the effect of structural

features of system size (e.g., lines of code, number of

components, number of functions) or degree of coupling on

design cost. Fewer studies investigate the effects of com-

plexity on individual performance, although it is generally

perceived to contribute more errors and lower productivity

(Card and Agresti 1988).

Several human subjects experiments empirically study

complexity in design. Hirschi and Frey (2002), hereafter

referred to as H&F, quantify the effect of problem size and

coupling on task completion time using a surrogate

parameter design task. Normalized completion time grows

linearly with the number of uncoupled variables but geo-

metrically with coupled variables—much faster than

polynomial growth in numerical solvers. Differences may

be explained from a cognitive psychology perspective of

limited short-term memory (Miller 1956). Another study

assembling molecular models as a surrogate design task

also finds effort grows super-linearly with a structural

complexity metric via a power law with exponent 1.48

(Sinha 2014). A third study using well-defined building

design problems and fixed allotted effort finds increasing

problem scale exponentially decreases solution quality

(Flager et al. 2014). These studies consistently show

technical complexity increases effort to meet fixed

requirements or decreases quality under fixed effort.

2.2 Collaboration in design

In contrast to an individual, a design team has no single

memory and requires communication to exchange

222 Res Eng Design (2016) 27:221–235

123



information and construct knowledge among members

(Konda et al. 1992; Arias et al. 2000). External artifacts

such as models, documents, or tools extend natural limits

of memory and communication. They often take advantage

of computational information systems (Engelbart 1995);

however, there exist benefits to physical media as well

(Arias et al. 1997). General group performance is not a

simple function of its individuals and is instead correlated

with attributes such as social sensitivity and equality in

distribution of conversation turn-taking (Woolley et al.

2010).

Most literature on teamwork or group performance

exists in the fields of social psychology (e.g., Kerr and

Tindale 2004) and organizational or management science

(e.g., Cohen and Bailey 1997). Negative effects of group

size described as social loafing or the Ringelmann effect

are attributed to coordination and motivation losses

(Kravitz and Martin 1986; Ingham et al. 1974). Other

factors impacting group performance include cohesion

composed largely of group pride (Mullen and Copper

1994), friendship mediated through cooperation and com-

mitment (Jehn and Pradhan 1997), task and team famil-

iarity (Goodman and Leyden 1991), and trust mediated

through motivation (Dirks 1999). Clustered organizational

structures made up of cliques enable higher group perfor-

mance (Huberman and Hogg 1995; Kearns et al. 2006;

McCubbins et al. 2009); however, clustering can also

restrict exploration in design (Lazer and Friedman 2007;

Mason and Watts 2012; Shore et al. 2015). While relevant

for understanding how team composition and structure

affects performance, these studies do not simultaneously

address the contextual effects of design tasks.

Two studies address the effect of component complex-

ity, defined as the number of unique actions required to

complete a task (Wood 1986), on group performance.

Weingart (1992) finds component complexity increases

both the amount and quality of planning for some aspects

of a task and decreases group effort, both effects mediating

lower group performance. Argote et al. (1995) find com-

ponent complexity has a negative main effect on group

performance. Performance gains for simple products are

greater than complex products as groups gain experience.

Turnover of group members also has a larger effect on

simple tasks compared to complex ones, possibly due to

social loafing behaviors. However, these studies only

consider well-defined and prescribed tasks such as assem-

bling origami and craft structures rather than the more

creative process of design.

Collaborative engineering applies social science

research to improve design outcomes among a team of

stakeholders with a common goal but limited resources or

conflicting interests. Lu et al. (2007) frame engineering

collaboration as a negotiation with four steps: (1)

interaction among designers to (2) construct a common

understanding leading to (3) a group preference, and finally

to (4) attain agreement on a design. Research from orga-

nizational science, social psychology, social choice, and

decision sciences apply to each step (respectively) to

develop new design approaches. Other literature presents

methods to improve collaborative design such as repeat-

able processes to be conducted by practitioners (Briggs

et al. 2003) and software tools to improve information

exchange among designers (Wang et al. 2002).

2.3 Research objectives

Literature in engineering design emphasizes technical

complexity with limited consideration of features relevant

for multi-actor design. Social science research investigates

factors contributing to group performance without consid-

ering the unstructured technical activities in engineering

design. Collaborative design research crosses both

domains; however, most literature emphasizes interven-

tions to improve outcomes instead of more basic processes

of design. In particular, no existing study quantifies the

effect of technical and social complexity on design effort.

To address the intersection between these topics, this paper

asks: What are the relative costs of technical and social

complexity in multi-actor design under barriers to

collaboration?

Past work shows technical complexity from the design

task super-linearly increases effort for individuals and

similar results are expected for groups. Social complexity

from the design team likely also increases effort, but it is

not known by how much or if it interacts with technical

complexity. Collaborative design relies on information

exchange to construct shared knowledge. Its cost depends

on the efficiency and effectiveness of communication

which is inherently limited by cognition, language, and

organizational boundaries. These barriers may be simulated

in artificial design activities by purposefully limiting

communication among designers as a bounding case on

realistic design activities.

To assess the research objectives, this study performs a

human subjects experiment using surrogate design tasks

with purposeful barriers to collaboration to limit and con-

trol communication among designers. Tasks vary elements

of technical complexity (problem size) and social com-

plexity (team size) to measure required completion time

(design effort). Although limited due to simplifications of

surrogate tasks performed in a controlled environment,

results are expected to bound realistic design tasks and

provide a measure of the relative contributions of technical

and social complexity to design effort. Improved under-

standing of the technical and social costs to collaboration

will improve estimates of required effort and lead to future
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work to assess new methods and tools to improve collab-

orative design.

3 Multi-actor system design model

This section develops a parameter-based model of multi-

actor system design as a surrogate task. It provides

experimental control over technical complexity by varying

the number and degree of coupling between variables and

social complexity by assigning variables to multiple

designers. The surrogate task also removes all context from

the design problem to reduce effects of domain knowledge

or experience and allow tasks to be solved in a short time

period.

3.1 Single-actor surrogate design task

Parameter design maps functional requirements (FRs) to

design parameters (DPs) (Suh 1999). In its most general

form, a system model M in Eq. 1 transforms an input vector

x of DPs to an output vector y of functional characteristics.

MðxÞ ¼ y ð1Þ

An error function E in Eq. 2 evaluates FR constraints by

comparing design outputs y with requirements yH. A

design meets FRs if error does not exceed a tolerance EH.

Eðy; yHÞ�EH ð2Þ

Combining Eqs. 1–3 states the objective of a parameter

design task.

find x s:t:E MðxÞ; yH
� �

�EH ð3Þ

Past work in H&F assumes a particular form for M, E,

and EH. A linear system model in Eq. 4 relates N inputs

and M outputs with an M � N transformation matrix M.

Element mij quantifies coupling between output i and input

j, i.e., mij ¼ dyi=dxj for a linear system.

MðxÞ ¼ Mx ¼
m11 . . . m1N

..

. . .
. ..

.

mM1 . . . mMN

2

664

3

775

x1

..

.

xN

2

664

3

775 ¼

y1

..

.

yM

2

664

3

775

ð4Þ

An error function in Eq. 5 takes the absolute value of the

difference between design outputs and FRs.

Eðy; yHÞ ¼ yi � yHi
�� ��� �

8 i ð5Þ

By substituting Eqs. 4, 5 in Eq. 3 and assigning a fixed

error tolerance EH

i ¼ e for all FRs, Eq. 6 states the objec-

tive for a single-actor surrogate design task.

find x s:t:
X

j

mijxj � yHi

�����

�����
� e 8 i ð6Þ

The variant with N ¼ M and e ¼ 0 is a linear system of

equations which could be solved with Gaussian elimination

in approximately 2N3=3 operations (Gentle 1998) if all

required parameters are quantified by a central actor.

3.2 Multi-actor surrogate design task

The multi-actor surrogate design task extends the single-

actor case by assigning each input and output to one

designer to represent control over DPs and FRs. Assign-

ments for a design task with n designers are formalized by

two binary (0, 1) matrices. An n� N matrix I assigns

inputs where element Iij is defined in Eq. 7.

Iij ¼
1 if input j assigned to designer i

0 otherwise

�
ð7Þ

Similarly, an n�M matrix O assigns outputs where ele-

ment Oij is defined in Eq. 8.

Oij ¼
1 if output j assigned to designer i

0 otherwise

�
ð8Þ

Assignment allows social coupling to emerge when one

designer’s inputs affect another’s outputs. An n� n square

matrix D captures social couplings by composing O, M,

and I in Eq. 9.

O�M� I| ¼ D ¼
d11 . . . d1n

..

. . .
. ..

.

dn1 . . . dnn

2

664

3

775 ð9Þ

Element dij 6¼ 0 indicates social coupling between design-

ers i and j, specifically that designer i’s outputs depend on

designer j’s inputs.

Consider an example design task with four inputs, four

outputs, and three designers in Eq. 10. Designer A controls

inputs 1 and 2 and outputs 1 and 2. Designer B controls

input 3 and output 3. Designer C controls input 4 and

output 4.

M ¼

m11 m12 m13 0

m21 m22 m23 0

m31 m32 m33 m34

0 0 0 m44

2

6664

3

7775
;

I ¼
1 1 0 0

0 0 1 0

0 0 0 1

2

64

3

75;O ¼
1 1 0 0

0 0 1 0

0 0 0 1

2

64

3

75

ð10Þ

224 Res Eng Design (2016) 27:221–235

123



The resulting D matrix in Eq. 11 shows coupling between

designers. Designer A’s inputs affect outputs for A and B,

B’s inputs affect all three designers’ outputs, and C’s inputs

only affect its own outputs.

D ¼
ðm11 þ m12 þ m21 þ m22Þ ðm13 þ m23Þ 0

ðm31 þ m32Þ m33 m34

0 0 m44

2

64

3

75

ð11Þ

Figure 1 illustrates a two-layer hyper-graph of the design

task. The technical layer shows coupling between inputs

and outputs from M. The social layer shows coupling

between designers from D. Input and output assignments

derived from I and O, respectively, connect the two layers.

3.3 Task generation method

A method adapted from H&F defines M and yH for ran-

domized tasks. The input range is bounded by xi 2 �1; 1½ �
and the initial value of all inputs and outputs is zero

(x0 ¼ y0 ¼ 0). Coupled tasks generate M with mij 2
ð�1; 1Þ by composing orthonormal bases of random vec-

tors drawn from a uniform (0, 1) distribution. The resulting

orthonormal matrix guarantees well-conditioned and bal-

anced relationships between inputs and outputs and con-

sistency of a single solution. Uncoupled tasks generate

diagonalM with elements mii 2 f�1; 1g each selected with
probability 0.5.

A target output yH with yHi 2 ð�1; 1Þ is the orthonormal

basis of a random vector drawn from a uniform (0, 1)

distribution subject to a constraint that each input of the

solution xH ¼ M�1yH must be greater than d ¼ 0:05 units

from the initial conditions, i.e., jxHi � x0;ij[ d 8 i. The

resulting target has a Euclidean norm of 1 (i.e., yH
�� �� ¼ 1)

to provide a standard solution distance and requires a

minimum change in d for each input to achieve the zero-

error solution.

3.4 Software implementation

A distributed software application implements the surro-

gate design task with three purposeful barriers to cognition

and collaboration. First, the system model is hidden so

designers can only observe effects of input value changes

on their assigned outputs. Second, no quantitative infor-

mation is displayed to prevent designers from mathemati-

cally solving the linear system. Finally, designers cannot

share graphical displays to simulate communication barri-

ers across organizational boundaries.

Figure 2 shows a designer client for a task with two

vertical slider inputs and two horizontal slider outputs.

Randomized labels are assigned to tasks (e.g., absorbed

copper), inputs (e.g., diameter, flexibility), and outputs

(e.g., epsilon, rho). To modify inputs, users drag the slider

thumb up and down, press up and down keys to move 1/

200 of the range or 0.01 units, or press page up and page

down keys to move 1/20 of the range or 0.1 units. While

dragging the slider thumb, inputs only update once

released. The signal icon displays a green check mark if an

output is within the error tolerance e of the target, visually a
darker region; otherwise, it displays a red cross. A designer

has no controls if not assigned any inputs or outputs for a

particular task.

The user interface differs slightly from H&F. First, this

design displays inputs vertically and outputs horizontally,

rather than both vertically, to prevent the uncoupled tasks

from being solved by aligning input slider thumbs with

x1

x2

x3

x4

y1 A

B

C

y2

y3

y4

Technical Layer Social Layer

Fig. 1 Multi-actor design task can be represented as a hyper-graph

connecting the inputs (xi) and outputs (yi) in a technical layer and

designers (A: black, B: gray, C: white) in a social layer

Fig. 2 Designer application includes sliders for assigned inputs and

outputs. Vertical input sliders respond to user actions. Horizontal

output sliders show the target and range of acceptable values
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output target values. Second, this design does not require a

designer to press a ‘‘Refresh Plot’’ button to update outputs.

Instead, discrete input methods and verbal communication

delays limit feedback rates with a smaller timescale com-

pared to the previous study. Finally, the addition of ran-

domized labels and icons and a completion audio queue

improve aesthetics without an expected impact on results.

3.5 Model assumptions and limitations

The multi-actor surrogate design task makes several sim-

plifying assumptions which limit its generalizability to

broader design tasks. First, it assumes there is exactly one

zero-error solution to the design task as one of three pos-

sible cases:

1. Overdetermined task with no solutions,

2. Underdetermined task with a plurality of solutions, and

3. Uniquely determined task with exactly one solution.

Overdetermined tasks have no zero-error solutions, i.e.,

no design meets all requirements. Either the task itself is

infeasible or requirements must be relaxed to find a feasible

solution. The process of relaxing requirements, opera-

tionalized as changing target outputs, ultimately produces

either an under- or uniquely determined task.

Underdetermined tasks have more than one solution

meeting all requirements. Preference for solutions consid-

ers other objectives such as minimizing cost or maximizing

value. Without considering these objectives in the task

formulation, all feasible solutions are functionally similar

to a uniquely defined solution. Providing an objective

function may confound experimental variables by also

measuring an individual’s effort to maximize value.

Uniquely determined tasks are least similar to real-world

design tasks but most applicable to the experimental

framing. A single-solution criterion provides a concise

measurement of effort and aligns all designers’ goals such

that secondary objectives are not needed. While there

exists one zero-error solution, the error bounds e in this

formulation provide a small range of acceptable solutions.

This practical, rather than theoretical, consideration allows

designers to find a solution with discrete inputs.

A second limitation arises from the linear system

defined by M. While most real-world systems are not lin-

ear, they also provide context such as physical laws and

mathematical models encapsulated in domain knowledge.

In this context-free case, even linear systems are not per-

ceived as simple due to limited cognitive abilities without

quantitative aids. Furthermore, a linear system model

provides three practical advantages. First, it is the simplest

model of technical coupling with minimal assumptions.

Second, consistent linear systems with a single zero-error

solution can be generated for arbitrarily complex design

tasks using randomized orthonormal matrices. Finally,

outputs can be rapidly computed with matrix

multiplication.

4 Experimental methodology

The multi-actor surrogate design formulation leads to four

types of tasks:

I. Uncoupled decisions within designers (M and D

diagonal),

II. Coupled decisions within designers (M uncon-

strained, D diagonal),

III. Uncoupled decisions across designers (M diagonal,

D unconstrained), and

IV. Coupled decisions across designers (M and D

unconstrained);

where the first two items are the cases studied by H&F.

This study adds social coupling to comparatively evaluate

type III and IV design tasks.

4.1 Experimental design

The experiment is structured as a multi-level study with

tasks and design teams as hierarchical units of analysis.

The number of task variables N and degree of coupling

operationalize technical complexity. The number of cou-

pled designers n operationalizes social complexity. The

time t to complete a task operationalizes design effort.

The experimental design in Table 1 samples tasks for

1� n� 3 designers and N ¼ M inputs and outputs with

2�NC � 4 coupled and 2�NU � 6 uncoupled variables.

The 14 numbered design tasks address the following

objectives:

1. Validate previous results: five cases (tasks 1, 2, 4, 5, 6).

2. Vary social coupling while holding technical coupling

constant: three cases with three levels each (tasks 1, 7,

11; 5, 9, 13; 6, 10, 14).

Table 1 Design task type with n coupled designers and N input and

output variables

n NU (uncoupled) NC (coupled)

2 3 4 5 6 2 3 4

1 Ia Ia1 Ia2 Ia I3 IIa4 IIa5 IIa6

2 III III7 III III III IV8 IV9 IV10

3 – III11 III III III12 – IV13 IV14

# Task number in this experimental design
a Task in H&F

226 Res Eng Design (2016) 27:221–235
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3. Vary technical coupling while holding nonzero social

coupling constant: one case with three levels (tasks 8,

9, 10).

Figure 3 illustrates designer assignments and replica-

tions for the 14 task types. Individual tasks are conducted

in parallel for the three designers, and pair tasks use

rotating assignments for each replication. In total, this

experimental design calls for 42 tasks: 3� 9 individual and

15 team.

4.2 Subjects

Ten sessions of three subjects participated in this study.

Volunteers were recruited from email solicitation and a

convenience sample of graduate engineering programs at

MIT and were not paid. Table 2 summarizes complete

subject demographics. Subjects were predominately male

(66.7 %) and 25–29 years of age (60.0 %). Most subjects

had never interacted with each other in the past (50.0 % of

pairs).

4.3 Experimental procedure

Design sessions are scheduled based on the availability of

three volunteers to form ad hoc teams. There is neither

random assignment of subjects to sessions nor purposeful

selection. All experiments are conducted in university

classrooms using a standard layout. Subjects choose color

(red, green, or blue) and sit on one side of a four-seat

rectangular designer table with the fourth seat reserved for

the administrator. The table is arranged such that each

computer display is only visible to the seated individual.

Experimental sessions are conducted using an IRB-ap-

proved protocol. Participants may exit the study at any

point but no such events occurred. A scripted presentation

introduces the experimental objectives and issues consent

forms and a demographic questionnaire. A series of five

training tasks introduce subjects to the software and design

process. Training tasks are similar to experimental tasks

and increase in difficulty from an n ¼ 1, NU ¼ 2 to an

n ¼ 3, NC ¼ 3 task. During training, an administrator

explains the software interface, design objectives, and

communication limitations. Training takes approximately

15 min to complete.

Four sessions complete the design tasks in randomized

order. Six other sessions use a partially randomized order

with a constraint that no NC ¼ 4 design problems (tasks 6,

10, and 14) can occur within the first ten tasks. This con-

straint acknowledges learning effects to avoid subjects

feeling overwhelmed by large design problems early in the

session. The order of each task is recorded to control for

learning effects in analysis. There is no time limit on

solving each task, although participants are instructed the

expected time to complete all tasks is 60 min. All designer

input modifications are automatically logged to file and the

x1 x2 x3

y1 y2 y3

7: 3 reps

11: 2 reps 12: 1 rep

1: 3x1 reps
(in parallel)

2: 3x1 reps
(in parallel)

3: 3x1 reps
(in parallel)

A

B

A

C

B

A

8: 3 reps 9: 3 reps 10: 1 rep

13: 1 rep 14: 1 rep

4: 3x2 reps
(in parallel)

5: 3x2 reps
(in parallel)

6: 3x2 reps
(in parallel)

x1 x2 x3

y1 y2 y3

x4

y4

x1 x2 x3

y1 y2 y3

x1 x2 x3

y1 y2 y3

x1 x2 x3

y1 y2 y3

x4

y4 y5 y6

x5 x6 x1 x2

y1 y2

x1 x2 x3

y1 y2 y3

x1 x2 x3

y1 y2 y3

x4

y4

x1 x2

y1 y2

x1 x2 x3

y1 y2 y3

x4

y4 y5 y6

x5 x6

x1 x2 x3

y1 y2 y3

x1 x2 x3

y1 y2 y3

x4

y4

x1 x2 x3

y1 y2 y3

x1 x2 x3

y1 y2 y3

x4

y4

Fig. 3 Graph representation of the six uncoupled tasks and eight coupled tasks with input/output assignments identified by color

Table 2 Experimental subject demographics in six sessions

Category Value Count (%)

Gender Male 20 66.7

Female 10 33.3

Age 18–24 9 30.0

25–29 18 60.0

30–34 2 6.7

35–39 1 3.3

Frequency of past interactions

with other subjects

Never or nearly never 30 50.0

Occasional (monthly) 22 36.7

Frequent (weekly) 8 13.3
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administrator advances to the next task when all subjects

are ready.

5 Results and analysis

5.1 Experimental results

Table 3 summarizes raw experimental results. Several tasks

omit missing data (NAs) from administrative and technical

issues. One replication of tasks 4 and 5 is missing from

three sessions, and one replication of task 6 is missing from

six sessions due to a modified experimental design. The

reduced amount of data in these sessions is not expected to

bias overall results. Furthermore, two sessions use e ¼ 0:1

and one uses e ¼ 0:11 while the remaining seven use

e ¼ 0:05.

Two other issues result in missing data. One individual

replication of task 6 was removed due to subject conces-

sion which biases results due to subject mortality effects;

however, this is the only observed instance in all tasks (1/

30 incidence). One replication of task 3 was removed due

to technical problems associated with the network

connection.

5.2 Analysis method

H&F use the linear regression models in Eqs. 12, 13 to

describe the effect of uncoupled task size NU and coupled

task size NC on completion time �ti for task i normalized by

a NC ¼ 2 task completed at some point during the session.

�ti ¼ b0 þ b1ðNUÞ þ ri ð12Þ

logð�tiÞ ¼ b0 þ b1ðNCÞ þ ri ð13Þ

Task time normalization imperfectly addresses corre-

lated samples within subjects which otherwise violates the

independence of errors required by linear regression. Fol-

lowing recommendations of Flager et al. (2014), this study

uses a conditional two-level regression model (Raudenbush

and Bryk 2002) also known as a hierarchical or mixed-

effects model with general form in Eq. 14.

Level 1: Yij ¼ b0j þ
X

i

bijðXiÞ þ rij ð14aÞ

Level 2: bij ¼ ci0 þ
X

j

cijðZjÞ þ uij ð14bÞ

A two-level regression accommodates correlated samples

at level 1 by allowing coefficients to vary with a level 2

factor. In this study, level 1 predictors (Xi) relate to task i

and level 2 predictors (Zj) relate to group j where indi-

viduals and teams are considered separate groups. Level 2

equations allow the intercept (b0j) or slopes (bij; i 6¼ 0) to

vary based on group-specific factors. Errors exist at both

the task (rij) and the group (uij) levels. This study uses the

lme4 R package for linear mixed-effects models for

analysis (Bates et al. 2015).

Plausible level 1 predictors include problem size NU or

NC, team size n, error tolerance e, and task order O. Based

on H&F, problem size is expected to have a geometric

impact on task time logðtÞ / N to model a random sam-

pling of a N-dimensional space. Team size is hypothesized

to have a power law relationship with task time

Table 3 Summary of raw

experimental results
Task n N C/U Samples Task completion time (s)

Num. NAs Net Min. 1st

Q.

Med. 3rd

Q.

Max.

1 1 3 U 30 0 0 2.8 10.0 13.7 16.1 33.5

2 1 4 U 30 0 0 3.8 11.1 14.9 19.2 51.2

3 1 6 U 30 3 27 9.3 22.9 27.6 44.4 56.9

4 1 2 C 60 9 51 3.7 9.1 13.8 20.4 40.0

5 1 3 C 60 9 51 4.0 29.3 36.8 57.8 201.9

6 1 4 C 60 19 41 18.3 59.1 105.9 148.1 368.0

7 2 3 U 30 0 30 10.4 22.7 32.3 37.6 61.2

8 2 2 C 30 0 30 6.6 18.9 30.6 50.0 203.0

9 2 3 C 30 6 24 27.2 89.0 127.8 228.7 476.7

10 2 4 C 10 0 10 82.9 141.5 341.0 416.4 770.8

11 3 3 U 20 0 20 17.9 29.1 33.4 43.1 89.4

12 3 6 U 10 0 10 37.5 47.8 84.8 123.1 177.8

13 3 3 C 10 0 10 86.1 97.0 132.1 326.3 783.3

14 3 4 C 10 0 10 129.9 361.4 652.8 704.7 1015.0

Total 420 46 374
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logðtÞ / logðnÞ. Variations in error tolerance e are treated

as independent factors. Task order quantifies learning

effects accumulated in sequential task ordering O with a

power law relationship logðtÞ / logðOÞ based on Hender-

son’s Law for learning curves (Henderson 1968). This

analysis uses a logarithmic transform of task time

(Yij ¼ logðtijÞ) for both coupled and uncoupled tasks to

accommodate expected multiplicative effects of level 1

predictors.

Plausible level 2 predictors include individual and team

demographic factors for gender, age, and frequency of past

interactions. Preliminary analysis finds a group identifier

factor G addresses more variance than other factors. As the

role of demographic factors in team composition is not the

focus of this study, G is used as the only level 2 predictor

similar, through much more limited in scope, to a collec-

tive intelligence factor (Woolley et al. 2010).

5.3 Uncoupled task analysis

A backward stepwise regression procedure in Table 4

sequentially eliminates nonsignificant factors. Each step

reduces AIC computed using a maximum likelihood (ML)

criterion. The step 1 model includes fixed effects for

problem size NU , team size logðnÞ, task order logðOÞ, error
tolerance factor e, and interaction between problem size

and team size NU � logðnÞ and random effects of G on the

intercept and problem size. The step 2 model eliminates the

random effect of G on NU as it contributes little variance.

The step 3 model eliminates the interaction term NU �
logðnÞ with tð98:6Þ ¼ �0:486, p ¼ 0:63 using the Ken-

ward-Roger (KR) approximation for degrees of freedom

(Halekoh and Højsgaard 2014). Graphical inspection of

model residuals in a Q–Q plot indicate a nearly normal

distribution.

Equation 15 shows the uncoupled task step 3 model

where c01 is unique to each group.

Level 1: log tij ¼ b0j þ b1jðNUÞ þ b2jðlog nÞ þ b3jðlogOÞ
þ b4jðe0:1Þ þ b5jðe0:11Þ þ rij

ð15aÞ

Level 2: bij ¼
c00 þ c01ðGÞ þ u0j; if i ¼ 0:

ci0 þ uij; otherwise:

�

ð15bÞ

5.4 Coupled task analysis

A backward stepwise regression procedure in Table 5

sequentially eliminates nonsignificant factors. The step

1 model includes fixed effects for problem size NC,

team size logðnÞ, task order logðOÞ, error tolerance

factor e, and interaction between problem size and team

size NC � logðnÞ and random effects of G on the

intercept and problem size. The Step 2 model elimi-

nates the random effect of G on the intercept as it

contributes minimal variance. The step 3 model elimi-

nates the interaction term NC � logðnÞ with

tð233:8Þ ¼ 0:630, p ¼ 0:53 using the KR approximation.

Graphical inspection of model residuals in a Q–Q plot

show only a minor deviation from a normal distribution

on the positive extrema.

Equation 16 shows the coupled task step 3 model where

c11 is unique to each group.

Level 1: log tij ¼ b0j þ b1jðNCÞ þ b2jðlog nÞ þ b3jðlogOÞ
þ b4jðe0:1Þ þ b5jðe0:11Þ þ rij

ð16aÞ

Table 4 Stepwise linear multiple effects models for uncoupled tasks

Random Coef. Step 1 model (AIC ¼ 117:39) Step 2 model (AIC ¼ 115:39) Step 3 model (AIC ¼ 113:62)

Factor Variance Std. dev. Factor Variance Std. dev. Factor Variance Std. dev.

G c01 (Inter.) 0.084 0.290 (Inter.) 0.084 0.290 (Inter.) 0.085 0.291

G c11 NU 1:6� 10�15 4:0� 10�8 NU – – NU – –

Residual 0.073 0.271 0.073 0.271 0.073 0.271

Fixed Coef. Estimate S.E. t stat. Estimate S.E. t stat. Estimate S.E. t stat.

(Intercept) c00 2.321 0.143 16.210 2.321 0.143 16.210 2.357 0.122 19.249

NU c10 0.276 0.024 11.618 0.276 0.024 11.618 0.269 0.019 14.256

log n c20 0.993 0.193 5.157 0.993 0.193 5.157 0.914 0.103 8.832

logO c30 -0.195 0.031 -6.257 -0.195 0.031 -6.257 -0.197 0.031 -6.397

e0:1 c40 -0.465 0.130 -3.569 -0.465 0.130 -3.569 -0.464 0.130 -3.559

e0:11 c50 -0.953 0.174 -5.488 -0.953 0.174 -5.488 -0.952 0.174 -5.474

NU � log n c60 -0.019 0.038 -0.486 -0.019 0.038 -0.486 – – –
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Level 2: bij ¼
c00 þ u0j; if i ¼ 0:

c10 þ c11ðGÞ þ u1j; if i ¼ 1:

ci0 þ uij; otherwise:

8
><

>:

ð16bÞ

6 Discussion

6.1 Interpretation of results

Consider the rearranged model in Eq. 17 with separate

coefficients for uncoupled (BUi) and coupled (BCi) tasks.

t ¼ B0 � BN
1 � nB2 � OB3 � Be0:1

4 � Be0:11
5

where B0 ¼ expðc00Þ; B1 ¼ expðc10Þ; B2 ¼ c20;

B3 ¼ c30; B4 ¼ expðc40Þ; and B5 ¼ expðc50Þ:
ð17Þ

This form yields models for completion time of uncoupled

tasks in Eq. 18 and coupled tasks in Eq. 19.

tU ¼10:6 � 1:31NU � n0:91 � O�0:20 � 0:63e0:1 � 0:39e0:11 ð18Þ

tC ¼2:80 � 2:85NC � n1:45 � O�0:21 � 0:76e0:1 � 0:47e0:11 ð19Þ

Figures 4 and 5 plot completion time contours for a task

with variable problem and team size, ordered O ¼ 10, and

with error tolerance e ¼ 0:05. Note the large differences in

completion time magnitude and contour shapes for

uncoupled and coupled tasks.

Intercept coefficients with estimated values BU0 ¼ 10:6

and BC0 ¼ 2:80 are interpreted as the base time to consider

a design problem with no prior experience. The higher

uncoupled task coefficient likely captures differing impacts

Table 5 Stepwise linear multiple effects models for coupled tasks

Random Coef. Step 1 Model (AIC ¼ 463:44) Step 2 Model (AIC ¼ 461:44) Step 3 Model (AIC ¼ 459:84)

Factor Variance Std. dev. Factor Variance Std. dev. Factor Variance Std. dev.

G c01 (Inter.) 3:2 � 10�16 1:8 � 10�8 (Inter.) – – (Inter.) – –

G c11 NC 6:8 � 10�3 0.083 NC 6:8 � 10�3 0.083 NC 6:8 � 10�3 0.082

Residual 0.369 0.607 0.368 0.606 0.369 0.607

Fixed Coef. Estimate S.E. t stat. Estimate S.E. t stat. Estimate S.E. t stat.

(Intercept) c00 1.094 0.208 5.260 1.094 0.208 5.260 1.028 0.180 5.712

NC c10 1.025 0.066 15.419 1.025 0.066 15.419 1.049 0.054 19.277

log n c20 1.197 0.428 2.795 1.197 0.428 2.795 1.451 0.144 10.056

logO c30 -0.207 0.051 -4.085 -0.207 0.051 -4.085 -0.209 0.051 -4.126

e0:1 c40 -0.266 0.153 -1.735 -0.266 0.153 -1.735 -0.270 0.153 -1.763

e0:11 c50 -0.755 0.206 -3.665 -0.755 0.206 -3.665 -0.759 0.206 -3.684

NC � log n c60 0.086 0.136 0.630 0.086 0.136 0.630 – – –

Fig. 4 Contour plot of uncoupled task completion time (seconds) for

the mean design group with O ¼ 10 and e ¼ 0:05

Fig. 5 Contour plot of coupled task completion time (seconds) for the

mean design group with O ¼ 10 and e ¼ 0:05
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of error tolerance factors rather than fundamental differ-

ences in problem framing and setup compared to coupled

tasks.

Results show substantially different problem size coef-

ficients for uncoupled tasks BU1 ¼ 1:31 and coupled tasks

BC1 ¼ 2:85. These factors indicate each additional uncou-

pled variable demands 31 % more time compared to 185 %

for each additional coupled variable. Coupling forces

designers to iterate on solutions with cognitive or com-

munication delays (Smith and Eppinger 1997). Results are

consistent with the churn effect where coupling and inter-

dependency increase design time (Yassine et al. 2003).

Although constrained to a geometric form, the effect of

problem size on uncoupled tasks is largely linear similar to

results of H&F. For coupled tasks, a 95 % confidence

interval of 2:56; 3:18½ � for BC1 does not include the value of

3.4 previously found by H&F. This difference may be

attributed to known contextual differences between this

study and H&F. For example, the new user interface may

provide higher information update frequency to benefit

integrated design (Yassine et al. 2013).

Results also show different team size coefficients for

uncoupled tasks BU2 ¼ 0:91 and coupled tasks BC2 ¼ 1:45.

These factors indicate uncoupled tasks scale sub-linearly

with team size and coupled tasks scale super-linearly. For

comparison, a value of 1.0 suggests cyclic or centralized

interaction (most agents interact with only a few others)

and a value of 2.0 suggests complete interaction (most

agents interact with most others). This polynomial factor

relates to the information content of the organizational

structure (i.e., D matrix) as theorized and demonstrated in

prior work on complexity metrics (Braha and Maimon

1998a, b). Results suggest uncoupled tasks allow cyclic or

centralized interaction while coupled tasks require more,

but not complete, interaction between designer pairs.

The experience curve coefficients BU3 ¼ �0:20 for

uncoupled tasks and BC3 ¼ �0:21 for coupled tasks show

the time to complete the last task (O ¼ 24) requires only

about 50 % of the first (O ¼ 1) and about 80 % of the tenth

(O ¼ 10). Results emphasize the importance of controlling

for learning effects in analysis.

Error tolerance dummy variable coefficients are BU4 ¼
0:63 and BU5 ¼ 0:39 for uncoupled tasks and BC4 ¼ 0:76

and BC5 ¼ 0:47 for coupled tasks. These factors are inter-

preted as completion time modifiers due to alternate error

tolerances (e ¼ 0:1 and 0.11, respectively) compared to

standard conditions with e ¼ 0:05. As expected, tasks are

completed in smaller time fractions as the error tolerance

grows. Although only considered as a factor here, future

work may consider an application of Fitts’s law for human

movement (Fitts 1954) to characterize the role of error

tolerance.

Finally, the interaction term between problem and team

size was found to be small and not significant for both

uncoupled and coupled tasks. This surprising result may be

due to the fixed organizational structures in this study,

whereas real teams are structured to meet needs of the

problem (e.g., Eppinger et al. 1994). Due to their apparent

independence in this study, effects of technical and social

complexity can be isolated in Figs. 6 and 7 relative to

baseline cases. Figure 6 clearly illustrates the geometric

and nearly linear growth for coupled and uncoupled

problems as found in H&F. Figure 7 shows a smaller but

distinct difference between coupled (super-linear) and

uncoupled (sub-linear) tasks as team size grows. Note the

costly 3–5� time multipliers for teams of three and cor-

responding 9–15� effort multiplier on total person-time.

These results show high potential costs to collaboration—

Fig. 6 Relative effect of problem size N on task completion time

compared with results from H&F and Gaussian elimination (G.E.).

Shaded area approximates a 95 % confidence interval on coefficient

values

Fig. 7 Relative effect of team size n on task completion time and

total effort (person-time). Shaded area approximates a 95 % confi-

dence interval on coefficient values
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independent of the technical problem—when designers are

restricted by communication barriers.

6.2 Limitations

A few limitations of this study must be discussed in more

detail. First, demographic factors such as age, gender, and

frequency of previous interaction were largely omitted in

analysis due to limited effects observed in preliminary

study. While some of these factors likely influence out-

comes as shown by Woolley et al. (2010), more data and

refined instruments are required to distinguish their effects

in aggregated groups. Future work with a broader sampling

frame should carefully capture related factors of interest to

identify differences in subject population.

This study’s treatment of pairs (tasks 7–10) is imperfect

in a three-subject session. Task 7 studies an uncoupled pair

design task, while a third designer simultaneously com-

pletes an independent task. Tasks 8–10 provide a blank

interface for the third designer. In both cases, the third

subject in the room likely biases results to over-estimate

effort due to additional conversation or distraction. Simi-

larly, due to the structural similarities of pair and triad

tasks, the group factor G aggregates across both rather than

defining separate factors for each pair of designers. Future

work may consider more controlled settings to study

variable team sizes.

The restriction in six sessions preventing the NC ¼ 4

design tasks within the first ten tasks likely biases the

results due to observed learning effects. Although con-

trolled in analysis, limited samples of large tasks early in

the experiment may under-estimate ordering effects. The

one observed subject concession directly demonstrates this

bias. Future work may consider more numerous training

tasks to further decrease the effect of task ordering; how-

ever, practical considerations limit the fraction of time

devoted to training versus data collection (about 1:4 here).

The decision to generate unique design tasks for each

session introduces variance in results. Random generation

of M and yH may make certain tasks easier to solve in

particular sessions, generally if some coupling factors mij

are close to zero. While using the same set of tasks across

all sessions would reduce this error, it also would introduce

a wider bias to the specific set of tasks selected and limit

repeatability of results. Future work may consider addi-

tional task replications to mitigate this effect.

Generalizability of results beyond the experimental

frame is limited by the design scenario. As described in

Sect. 3.5, the surrogate task models a context-free linear

system with one zero-error solution where real design tasks

are likely nonlinear, much larger (more variables), context-

rich, and may have no or many solutions. Only small

ranges of problem size (2–4 variables) and team size (1–3

designers) are considered due to practical limitations. The

surrogate task does not consider specialized knowledge

(Postrel 2002) or decomposable tasks (Eppinger et al.

1994) which remove nearly all benefits from collaboration.

The design team organizational structure is essentially

fixed to be fully connected, while real product development

networks exhibit the small-world property with local

clustering but a short distance between any two individuals

(Braha and Bar-Yam 2007). Furthermore, ad hoc team

formation does not capture other factors relevant to group

performance such as cohesion. Despite these limitations,

results may be considered as stylized cases to bound fea-

tures of real tasks.

Finally, subject selection from graduate engineering

programs captures some aspects of the intended population

(i.e., designers); however, students have varying degrees of

experience and do not all practice design. This effect is

mitigated by the context-free design task and ad hoc team

composition which limit the impact of previous experience.

Furthermore, the two-level regression model accommo-

dates individual variance in computer interface manipula-

tion and problem-solving capability by individuals and

groups. Possible selection bias must be acknowledged from

volunteer responses to email and convenience solicitation

which demonstrates a general interest and degree of

engagement in the design activity by the participants.

6.3 Implications for design

Although limited in generalizability, results from this study

can bound some features of broader design tasks. Most real

problems are partially coupled with a sparse M matrix

(Eppinger et al. 1994). Time to solve linear design variants

is bounded by coupled and uncoupled problems in Fig. 6

which, together, form a lower bound on nonlinear design

variants. The effect of context reduces effective technical

complexity due to prior knowledge, suggesting these

results are an upper bound on time to complete context-rich

tasks.

Other efforts to reduce effective technical complexity

may mitigate the geometric contribution of problem size in

coupled problems. For example, higher information update

frequency in the user interface may explain why results of

this study improve upon H&F shown as a dotted line in

Fig. 6. Gaussian elimination (G.E., shown as a dash-dot

line) as an alternative solution method provides even better

scaling; however, it requires centralized control and

numerical methods purposefully difficult to implement in

this scenario.

The effect of team size on completion time is similar for

uncoupled and coupled tasks under the barriers to collab-

oration considered. Any value above 1.0 in Fig. 7 indicates
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costs to collaboration as expected for non-decomposable

tasks. Indeed, collaboration contributes about 50–60 % of

time for pairs and 60–80 % for triads. These values are an

upper bound to real design tasks which benefit from par-

allel work flows, rich communication, and specialized

knowledge. One comparison point observes engineers

spend less than half their time on ‘‘legitimate design acts’’

with the remainder devoted to resolving ambiguity, deter-

mining what must be known, and how to work with others

(Bucciarelli 1988). The cost of collaboration is even higher

when considering the total team effort incurred as person-

time. Collaboration contributes 70–80 % of cost for pairs

and 90 % for triads. Although these costs to collaboration

cannot easily be generalized outside this study, an ideal

collaborative process would maintain or improve upon the

efficiency of an individual.

7 Conclusion

This study produces three main results. First, it replicates

results from H&F with small but statistically significant

differences in scaling factor for coupled tasks which may

be attributed to contextual factors. Second, technical and

social sources of complexity appear to be independent

factors contributing to completion time for the tasks con-

sidered which allows the two factors to be studied in iso-

lation. Finally, social sources of complexity from team size

contribute significant time and cost in design under pur-

poseful barriers to collaboration. Completion time grows

sub-linearly with team size for uncoupled tasks and super-

linearly for coupled tasks. These results and future efforts

may improve estimates of required effort for collaborative

design and help assess the effectiveness of proposed pro-

cesses and tools.

There are several extensions of this study left for future

work. First, external validity could be improved with

revised design tasks. While the surrogate task in this study

uses a linear system of equations, any general system

model could be substituted. Nonlinear, context-rich, larger,

or partially coupled system models would improve the

generalizability of results. For example, De Jong functions

(De Jong 1975) used in optimization evaluation may

maintain a context-free task while introducing nonlinear

models. Some system models may warrant an objective

function to avoid a difficult-to-find single zero-error solu-

tion, a time limit for practical reasons, and both local and

global objectives for realism.

Future studies may also benefit from larger, experi-

enced, more familiar, organizationally diverse, or even

spatially distributed design teams. Introducing partially

coupled problems where the M matrix is neither complete

nor diagonal allows tasks to be decomposed into sub-

problems. Alternative organizational structures may mirror

the design problem (Eppinger et al. 1994), form a clustered

network (Huberman and Hogg 1995), or reduce the level of

highly connected designers (Braha and Bar-Yam 2007) to

improve group performance. Additional analysis of actual

communication (e.g., verbal transcriptions) may yield more

details on information exchange between designers to

compare optimal policies (Yassine et al. 2013) and evalu-

ate assortivity or disassortivity (Braha et al. 2013).

Next, there may be opportunities to combine the

uncoupled and coupled task evaluation under a common

framework with a complexity metric. While treated as two

separate classes of problems in this study, there are likely

common underlying features which may be quantified

using technical and social complexity metrics rather than

the problem size N and team size n variables used in this

analysis. One candidate is the comprehensive metric for

structural complexity using graph energy as a measure of

Shannon information entropy (Sinha 2014). Combined

analysis would improve results by aggregating group fac-

tors across both coupled and uncoupled tasks and possibly

allow extension to more generalizable problems.

Finally, another area of future work could assess pro-

posed collaborative methods by comparing to the baseline

case in this study. For example, sharing output values on a

common display may allow uncoupled tasks to be com-

pleted in parallel. Other numerical outputs may help

designers quantitatively evaluate the effect of input chan-

ges in complex design problems. Displaying the quantita-

tive error between output and target values, normalized to a

reasonable scale, could support collaborative decision-

making by building a common mental model of ‘‘good-

ness.’’ This aligns with the ‘‘discourse group preference’’

phase of the engineering collaboration via negotiation

(ECN) model hypothesized by Lu et al. (2007), which in

the present study is limited to qualitative judgments.
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