1,055 research outputs found

    Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rapid and accurate identification of species is a critical component of large-scale biodiversity monitoring programs. DNA arrays (micro and macro) and DNA barcodes are two molecular approaches that have recently garnered much attention. Here, we compare these two platforms for identification of an important group, the mammals.</p> <p>Results</p> <p>Our analyses, based on the two commonly used mitochondrial genes cytochrome <it>c </it>oxidase I (the standard DNA barcode for animal species) and cytochrome b (a common species-level marker), suggest that both arrays and barcodes are capable of discriminating mammalian species with high accuracy. We used three different datasets of mammalian species, comprising different sampling strategies. For DNA arrays we designed three probes for each species to address intraspecific variation. As for DNA barcoding, our analyses show that both cytochrome <it>c </it>oxidase I and cytochrome b genes, and even smaller fragments of them (mini-barcodes) can successfully discriminate species in a wide variety of specimens.</p> <p>Conclusion</p> <p>This study showed that DNA arrays and DNA barcodes are valuable molecular methods for biodiversity monitoring programs. Both approaches were capable of discriminating among mammalian species in our test assemblages. However, because designing DNA arrays require advance knowledge of target sequences, the use of this approach could be limited in large scale monitoring programs where unknown haplotypes might be encountered. DNA barcodes, by contrast, are sequencing-based and therefore could provide more flexibility in large-scale studies.</p

    Recovery of the mitochondrial COI barcode region in diverse Hexapoda through tRNA-based primers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA barcoding uses a 650 bp segment of the mitochondrial cytochrome <it>c </it>oxidase I (COI) gene as the basis for an identification system for members of the animal kingdom and some other groups of eukaryotes. PCR amplification of the barcode region is a key step in the analytical chain, but it sometimes fails because of a lack of homology between the standard primer sets and target DNA.</p> <p>Results</p> <p>Two forward PCR primers were developed following analysis of all known arthropod mitochondrial genome arrangements and sequence alignment of the tRNA-W gene which was usually located within 200 bp upstream of the COI gene. These two primers were combined with a standard reverse primer (LepR1) to produce a cocktail which generated a barcode amplicon from 125 of 141 species that included representatives of 121 different families of Hexapoda. High quality sequences were recovered from 79% of the species including groups, such as scale insects, that invariably fail to amplify with standard primers.</p> <p>Conclusions</p> <p>A cocktail of two tRNA-W forward primers coupled with a standard reverse primer amplifies COI for most hexapods, allowing characterization of the standard barcode primer binding region in COI 5' as well as the barcode segment. The current results show that primers designed to bind to highly conserved gene regions upstream of COI will aid the amplification of this gene region in species where standard primers fail and provide valuable information to design a primer for problem groups.</p

    A universal DNA mini-barcode for biodiversity analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The goal of DNA barcoding is to develop a species-specific sequence library for all eukaryotes. A 650 bp fragment of the cytochrome <it>c </it>oxidase 1 (CO1) gene has been used successfully for species-level identification in several animal groups. It may be difficult in practice, however, to retrieve a 650 bp fragment from archival specimens, (because of DNA degradation) or from environmental samples (where universal primers are needed).</p> <p>Results</p> <p>We used a bioinformatics analysis using all CO1 barcode sequences from GenBank and calculated the probability of having species-specific barcodes for varied size fragments. This analysis established the potential of much smaller fragments, mini-barcodes, for identifying unknown specimens. We then developed a universal primer set for the amplification of mini-barcodes. We further successfully tested the utility of this primer set on a comprehensive set of taxa from all major eukaryotic groups as well as archival specimens.</p> <p>Conclusion</p> <p>In this study we address the important issue of minimum amount of sequence information required for identifying species in DNA barcoding. We establish a novel approach based on a much shorter barcode sequence and demonstrate its effectiveness in archival specimens. This approach will significantly broaden the application of DNA barcoding in biodiversity studies.</p

    Filling the gap - COI barcode resolution in eastern Palearctic birds

    Get PDF
    © 2009 Kerr et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Cooling of Dark-Matter Admixed Neutron Stars with density-dependent Equation of State

    Full text link
    We propose a dark-matter (DM) admixed density-dependent equation of state where the fermionic DM interacts with the nucleons via Higgs portal. Presence of DM can hardly influence the particle distribution inside neutron star (NS) but can significantly affect the structure as well as equation of state (EOS) of NS. Introduction of DM inside NS softens the equation of state. We explored the effect of variation of DM mass and DM Fermi momentum on the NS EOS. Moreover, DM-Higgs coupling is constrained using dark matter direct detection experiments. Then, we studied cooling of normal NSs using APR and DD2 EOSs and DM admixed NSs using dark-matter modified DD2 with varying DM mass and Fermi momentum. We have done our analysis by considering different NS masses. Also DM mass and DM Fermi momentum are varied for fixed NS mass and DM-Higgs coupling. We calculated the variations of luminosity and temperature of NS with time for all EOSs considered in our work and then compared our calculations with the observed astronomical cooling data of pulsars namely Cas A, RX J0822-43, 1E 1207-52, RX J0002+62, XMMU J17328, PSR B1706-44, Vela, PSR B2334+61, PSR B0656+14, Geminga, PSR B1055-52 and RX J0720.4-3125. It is found that APR EOS agrees well with the pulsar data for lighter and medium mass NSs but cooling is very fast for heavier NS. For DM admixed DD2 EOS, it is found that for all considered NS masses, all chosen DM masses and Fermi momenta agree well with the observational data of PSR B0656+14, Geminga, Vela, PSR B1706-44 and PSR B2334+61. Cooling becomes faster as compared to normal NSs in case of increasing DM mass and Fermi momenta. It is infered from the calculations that if low mass super cold NSs are observed in future that may support the fact that heavier WIMP can be present inside neutron stars.Comment: 24 Pages, 15 Figures and 2 Tables. Version accepted in The European Physical Journal

    Matched sizes of activating and inhibitory receptor/ligand pairs are required for optimal signal integration by human Natural Killer cells

    Get PDF
    It has been suggested that receptor-ligand complexes segregate or co-localise within immune synapses according to their size, and this is important for receptor signaling. Here, we set out to test the importance of receptor-ligand complex dimensions for immune surveillance of target cells by human Natural Killer (NK) cells. NK cell activation is regulated by integrating signals from activating receptors, such as NKG2D, and inhibitory receptors, such as KIR2DL1. Elongating the NKG2D ligand MICA reduced its ability to trigger NK cell activation. Conversely, elongation of KIR2DL1 ligand HLA-C reduced its ability to inhibit NK cells. Whereas normal-sized HLA-C was most effective at inhibiting activation by normal-length MICA, only elongated HLA-C could inhibit activation by elongated MICA. Moreover, HLA-C and MICA that were matched in size co-localised, whereas HLA-C and MICA that were different in size were segregated. These results demonstrate that receptor-ligand dimensions are important in NK cell recognition, and suggest that optimal integration of activating and inhibitory receptor signals requires the receptor-ligand complexes to have similar dimensions

    Effects of Neuraxial Blockade May Be Difficult To Study Using Large Randomized Controlled Trials: The PeriOperative Epidural Trial (POET) Pilot Study

    Get PDF
    Early randomized controlled trials have suggested that neuraxial blockade may reduce cardiorespiratory complications after non-cardiothoracic surgery, but recent larger trials have been inconclusive. We conducted a pilot study to assess the feasibility of conducting a large multicentre randomized controlled trial in Canada.After Research Ethics Board approvals from the participating institutions, subjects were recruited if they were > or = 45 years old, had an expected hospital stay > or = 48 hours, were undergoing a noncardiothoracic procedure amenable to epidural analgesia, met one of six risk criteria, and did not have contraindications to neuraxial blockade. After informed consent, subjects were randomly allocated to combined epidural analgesia (epidural group) and neuraxial anesthesia, with or without general anesthesia, or intravenous opioid analgesia (IV group) and general anesthesia. The primary outcomes were the rate of recruitment and the percents of eligible patients recruited, crossed over, and followed completely. Feasibility targets were defined a priori. A blinded, independent committee adjudicated the secondary clinical outcomes. Subjects were followed daily while in hospital and then at 30 days after surgery. Analysis was intention-to-treat. Over a 15-month period, the recruitment rate was 0.5+/-0.3 (mean+/-SEM) subjects per week per centre; 112/494 (22.7%) eligible subjects were recruited at four tertiary-care teaching hospitals in Canada. Thirteen (26.5%) of 49 subjects in the epidural group crossed over to the IV group; seven (14.3%) were due to failed or inadequate analgesia or complications from epidural analgesia. Five (9.8%) of 51 subjects in the IV group crossed over to the epidural group but none were due to inadequate analgesia or complications. Ninety-eight (97.0%) of 101 subjects were successfully followed up until 30 days after their surgery.Of the criteria we defined for the feasibility of a full-scale trial, only the follow-up target was met. The other feasibility outcomes did not meet our preset criteria for success. The results suggest that a large multicentre trial may not be a feasible design to study the perioperative effects of neuraxial blockade.ClinicalTrials.gov NCT 0221260 Controlled-Trials.com ISRCTN 35629817

    Increased ventral striatal volume in college-aged binge drinkers

    Get PDF
    BACKGROUND Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala. METHOD T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data. RESULTS Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups. CONCLUSIONS Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor
    corecore