6 research outputs found

    Improving peak concentrations of a single dose regime of gentamicin in patients with sepsis in the emergency department.

    No full text
    ObjectiveTo achieve an optimal effect in patients with sepsis at the emergency department (ED), the gentamicin peak-concentration should be sufficiently high (i.e. peak-concentration/MIC ≥8-10). ICU patients with sepsis often need higher gentamicin doses to achieve sufficiently high peak-concentrations. The aim of this study is to investigate which dose is needed to reach adequate peak-concentrations in patients presenting with sepsis at the ED.MethodsPatients with sepsis at the ED were included from August 2015 until February 2017. Peak-concentrations were measured in blood 30 minutes after the first gentamicin dose. The study consisted of three phases. In the first phase, peak-concentrations were measured after a standard dose of 5mg/kg. In the second phase, a simulation ((peak-concentration/actual dose) × simulated dose) was performed to determine which dose was needed to reach adequate gentamicin peak-concentrations of ≥16mg/L. In the third phase, peak-concentrations were measured for the best simulated dose.ResultsIn phase one, of 86 patients who received a dose of 5mg/kg, 34 (39.5%) patients did not reach the target peak-concentration of ≥16mg/L, and 73 (84.9%) did not reach ≥20mg/L. In phase two, the simulation showed that with a dose of 7mg/kg 83 (96.5%) patients would reach peak-concentrations ≥16mg/L, and 67 (77.9%) of ≥20mg/L. In phase three, 53 patients received a dose of 7mg/kg, of whom 45 (84.9%) reached peak-concentrations of ≥16mg/L, and 31 (58.5%) of ≥20mg/L.ConclusionPatients with sepsis at the ED need higher doses of gentamicin. A dose of 7mg/kg is needed to achieve adequate peak-concentrations in the majority of patients

    Accuracy of deformable image registration-based intra-fraction motion management in Magnetic Resonance-guided radiotherapy

    No full text
    Background and Purpose: Intra-fraction motion management is key in Stereotactic Ablative Radiotherapy (SABR) gated delivery. This study assessed the accuracy of automatic tumor segmentation in the delivery of MR-guided radiotherapy (MRgRT) by comparing it to manual delineations performed by experienced observers. Materials and Methods: Twenty patients previously treated with MR-guided SABR for thoracic and abdominal tumors were included. Five observers with at least two years of experience in MRgRT manually delineated the gross tumor volume (GTV) for 20 patients on 240 frames of a cine MRI on a sagittal plane. Deformable Image Registration (DIR) based GTV contours were propagated using four different algorithms from a reference frame to subsequent frames.Geometrical analysis based on the Dice Similarity Coefficient (DSC), centroid distance and Hausdorff Distance (HDD) were performed to assess the inter-observer variability and the accuracy of automatic segmentation. A Confidence Value (CV) metric for the reliability of the tumor auto-contouring was also calculated. Results: Inter-observer delineation variability resulted in mean DSC of 0.89, HDD of 5.8 mm and centroid distance of 1.7 mm. Tumor auto-contouring by the four DIR algorithms resulted in an excellent agreement with the manual delineations by the experienced observers. Mean DSC for each algorithm across all patients was greater than 0.90, whereas the HDD and centroid distances were below 4.0 mm and 1.5 mm, respectively. The CV showed a strong correlation with the DSC. Conclusions: DIR-based auto-contouring in MRgRT exhibited a high level of agreement with the manual contouring performed by experts, allowing accurate gated delivery

    Impact of Daily Plan Adaptation on Organ-At-Risk Normal Tissue Complication Probability for Adrenal Lesions undergoing Stereotactic Ablative Radiation Therapy: NTCP advantages of adaptive MR-guided adrenal SABR

    No full text
    Introduction: Stereotactic ablative radiotherapy (SABR) can achieve good local control for metastatic adrenal lesions. Magnetic resonance (MR)-guidance with daily on-table plan adaptation can augment the delivery of SABR with greater dose certainty. The goal of this study was to quantify the potential clinical benefit MR-guided daily-adaptive adrenal SABR using the normal tissue complication probability (NTCP) framework. Methods: Patients treated with adrenal MR-guided SABR at a single institution were retrospectively reviewed. Lyman-Kutcher-Burman NTCP models were used to calculate the NTCP of upper abdominal organs-at-risk (OARs) at simulation and both before and after daily on-table plan adaptation. Differences in OAR NTCPs were assessed using signed-rank tests. Potential predictors of the benefits of adaptation were assessed by linear regression. Results: Fifty-two adrenal MR-guided SABR courses were analyzed. The baseline simulation plan underestimated the absolute stomach NTCP by 10.0% on average (95% confidence interval: 4.7–15.2%, p < 0.001). Daily on-table adaptation lowered absolute NTCP by 8.7% (4.2–13.2%, p < 0.001). The most significant predictor of the benefits of adaptation was lesion laterality (p = 0.018), with left-sided lesions benefitting more (13.3% [6.3–20.4%], p < 0.001) than right-sided lesions (2.1% [−1.6–5.7%], p = 0.25). Sensitivity analyses did not change the statistical significance of the findings. Conclusion: NTCP analysis revealed that patients with left adrenal tumors were more likely to benefit from MR-guided daily on-table adaptive SABR using current dose/fractionation regimens due to reductions in predicted gastric toxicity. Right-sided adrenal lesions may be considered for dose escalation due to low predicted NTCP
    corecore