424 research outputs found

    The reduction of the effect of the Muller-Lyer illusion on saccade amplitude by classic adaptation

    Get PDF
    The effect of MĂŒller-Lyer stimuli on saccade amplitude varies across studies. One methodological difference between studies is stimulus display time; studies with long stimulus display times tend to report smaller effects than studies with short display times. Is it possible that long display times might provide conditions in which saccade adaption takes place? Five adult subjects were exposed to runs of the same illusion-inducing MĂŒller-Lyer stimulus, presented for 1 s, interspersed with probe trials in which a point target was presented for 200 ms. While saccade amplitude was consistently larger with ‘in-configurations’ than with ‘out-configurations’ at the beginning of runs, amplitude declined over runs with the in-configuration. On average, it was constant in out-configuration runs. The net effect was a decline in the apparent effect size (in-amp − out-amp / out-amp) of the MĂŒller-Lyer stimulus. Probe trial saccade amplitude increased in ‘out’ runs and decreased in ‘in’ runs. These effects were not present in control experiments, in which stimulus display time was 200 ms. One explanation for this pattern of results is that long stimulus presentation times allow for the generation of retinal error signals. This in turn leads to saccade adaptation, causing an underestimation of the effect of this type of stimulus on saccade amplitude

    Spatial Linear Mixed Effects Modelling for OCT Images: SLME Model.

    Get PDF
    Much recent research focuses on how to make disease detection more accurate as well as "slimmer", i.e., allowing analysis with smaller datasets. Explanatory models are a hot research topic because they explain how the data are generated. We propose a spatial explanatory modelling approach that combines Optical Coherence Tomography (OCT) retinal imaging data with clinical information. Our model consists of a spatial linear mixed effects inference framework, which innovatively models the spatial topography of key information via mixed effects and spatial error structures, thus effectively modelling the shape of the thickness map. We show that our spatial linear mixed effects (SLME) model outperforms traditional analysis-of-variance approaches in the analysis of Heidelberg OCT retinal thickness data from a prospective observational study, involving 300 participants with diabetes and 50 age-matched controls. Our SLME model has a higher power for detecting the difference between disease groups, and it shows where the shape of retinal thickness profiles differs between the eyes of participants with diabetes and the eyes of healthy controls. In simulated data, the SLME model demonstrates how incorporating spatial correlations can increase the accuracy of the statistical inferences. This model is crucial in the understanding of the progression of retinal thickness changes in diabetic maculopathy to aid clinicians for early planning of effective treatment. It can be extended to disease monitoring and prognosis in other diseases and with other imaging technologies

    Thermal performance of two heat exchangers for thermoelectric generators

    Get PDF
    Thermal performance of heat exchanger is important for potential application in integrated solar cell/module and thermoelectric generator (TEG) system. Usually, thermal performance of a heat exchanger for TEGs is analysed by using a 1D heat conduction theory which ignores the detailed phenomena associated with thermo-hydraulics. In this paper, thermal and mass transports in two different exchangers are simulated by means of a steady-state, 3D turbulent flow k -e model with a heat conduction module under various flow rates. In order to simulate an actual working situation of the heat exchangers, hot block with an electric heater is included in the model. TEG model is simplified by using a 1D heat conduction theory, so its thermal performance is equivalent to a real TEG. Natural convection effect on the outside surfaces of the computational model is considered. Computational models and methods used are validated under transient thermal and electrical experimental conditions of a TEG. It is turned out that the two heat exchangers designed have a better thermal performance compared with an existing heat exchanger for TEGs, and more importantly, the fin heat exchanger is more compact and has nearly half temperature rise compared with the tube heat exchanger

    The effect of scleral search coil lens wear on the eye

    Get PDF
    BACKGROUND/AIM Scleral search coils are used to measure eye movements. A recent abstract suggests that the coil can affect the eye by decreasing visual acuity, increasing intraocular pressure, and damaging the corneal and conjunctival surface. Such findings, if repeated in all subjects, would cast doubt on the credibility of the search coil as a reliable investigative technique. The aim of this study was to reassess the effect of the scleral search coil on visual function. METHODS Six volunteer subjects were selected to undergo coil wear and baseline measurements were taken of logMAR visual acuity, non-contact tonometry, keratometry, and slit lamp examination. Four drops of 0.4% benoxinate hydrochloride were instilled before insertion of the lens by an experienced clinician. The lens then remained on the eye for 30 minutes. Measurements of the four ocular health parameters were repeated after 15 and 30 minutes of lens wear. The lens was then removed and the health of the eye reassessed. RESULTS No obvious pattern of change was found in logMAR visual acuity, keratometry, or intraocular pressure. The lens did produce changes to the conjunctival and corneal surfaces, but this was not considered clinically significant. CONCLUSION Search coils do not appear to cause any significant effects on visual function. However, thorough prescreening of subjects and post-wear checks should be carried out on all coil wearers to ensure no adverse effects have been caused
    • 

    corecore