2,208 research outputs found

    Video capture and editing as a tool for the storage, distribution, and illustration of morphological characters of nematodes.

    Get PDF
    Morphological identification and detailed observation of nematodes usually requires permanent slides, but these are never truly permanent and often prevent the same specimens to be used for other purposes. To efficiently record the morphology of nematodes in a format that allows easy archiving, editing, and distribution, we have assembled two micrographic video capture and editing (VCE) configurations. These assemblies allow production of short video clips that mimic multifocal observation of nematode specimens through a light microscope. Images so obtained can be used for training, management, and online access of “virtual voucher specimens” in taxonomic collections, routine screening of fixed or unfixed specimens, recording of ephemeral staining patterns, or recording of freshly dissected internal organs prior to their decomposition. We provide an overview of the components and operation of both of our systems and evaluate their efficiency and image quality. We conclude that VCE is a highly versatile approach that is likely to become widely used in nematology research and teachin

    Structure of Six-Dimensional Microstate Geometries

    Get PDF
    We investigate the structure of smooth and horizonless microstate geometries in six dimensions, in the spirit of the five-dimensional analysis of Gibbons and Warner [arXiv:1305.0957]. In six dimensions, which is the natural setting for horizonless geometries with the charges of the D1-D5-P black hole, the natural black objects are strings and there are no Chern-Simons terms for the tensor gauge fields. However, we still find that the same reasoning applies: in absence of horizons, there can be no smooth stationary solutions without non-trivial topology. We use topological arguments to describe the Smarr formula in various examples: the uplift of the five-dimensional minimal supergravity microstates to six dimensions, the two-charge D1-D5 microstates, and the non-extremal JMaRT solution. We also discuss D1-D5-P superstrata and confirm that the Smarr formula gives the same result as for the D1-D5 supertubes which are topologically equivalent.Comment: 29 pages, v2: references added, published versio

    The Chameleon project in retrospective

    Get PDF
    In this paper we describe in retrospective the main results of a four year project, called Chameleon. As part of this project we developed a coarse-grained reconfigurable core for DSP algorithms in wireless devices denoted MONTIUM. After presenting the main achievements within this project we present the lessons learned from this project

    Absorption and generation of femtosecond laser-pulse excited spin currents in non-collinear magnetic bilayers

    Get PDF
    Spin currents can be generated on an ultrafast timescale by excitation of a ferromagnetic (FM) thin film with a femtosecond laser-pulse. Recently, it has been demonstrated that these ultrafast spin currents can transport angular momentum to neighbouring FM layers, being able to change both the magnitude and orientation of the magnetization in the adjacent layer. In this work, both the generation and absorption of these optically excited spin currents are investigated. This is done using non-collinear magnetic bilayers, i.e. two FM layers separated by a conductive spacer. Spin currents are generated in a Co/Ni multilayer with out-of-plane (OOP) anisotropy, and absorbed by a Co layer with an in-plane (IP) anisotropy. This behaviour is confirmed by careful analysis of the laser-pulse induced magnetization dynamics, whereafter it is demonstrated that the transverse spin current is absorbed very locally near the injection interface of the IP layer (90% within the first approx. 2 nm). Moreover, it will also be shown that this local absorption results in the excitation of THz standing spin waves within the IP layer. The dispersion measured for these high frequency spin waves shows a discrepancy with respect to the theoretical predictions, for which a first explanation involving intermixed interface regions is proposed. Lastly, the spin current generation is investigated using different number of repeats for the Co/Ni multilayer, which proves to be of great relevance for identifying the optical spin current generation mechanism

    Lessons Learned from Designing the Montium - a Coarse-Grained Reconfigurable Processing Tile

    Get PDF
    In this paper we describe in retrospective the main results of a four year project, called Chameleon. As part of this project we developed a coarse-grained reconfigurable core for DSP algorithms in wirelessdevices denoted MONTIUM. After presenting the main achievements within this project we present the lessons learned from this project

    W. Douglas Hazard and the Newport Herald, 1907-1945

    Get PDF
    The late nineteenth century introduced the Gilded Age and robust party politics into the City by the Sea. The Newport Herald, established in 1892, was able to bridge these very different worlds. Heavily Democratic, the Newport Herald catered to local, working Newporters with an emphasis on local news and sports. At the same time, through wire services and agents in New York, the paper reported the minute details of Newport’s elite summer colony, which transformed from Mrs. Astor’s “Polite 400” to the very public period of “Café Society” of the 1930s and 1940s. This article\u27s examination of the career of W. Douglas Hazard, the Newport Herald’s owner and guiding light for much of its existence, illuminates the paper’s strong emphasis on local coverage including extensive reportage of social activity in the Summer Colony

    On hardware for generating routes in Kautz digraphs

    Get PDF
    In this paper we present a hardware implementation of an algorithm for generating node disjoint routes in a Kautz network. Kautz networks are based on a family of digraphs described by W.H. Kautz[Kautz 68]. A Kautz network with in-degree and out-degree d has N = dk + dkÂż1 nodes (for any cardinals d, k>0). The diameter is at most k, the degree is fixed and independent of the network size. Moreover, it is fault-tolerant, the connectivity is d and the mapping of standard computation graphs such as a linear array, a ring and a tree on a Kautz network is straightforward.\ud The network has a simple routing mechanism, even when nodes or links are faulty. Imase et al. [Imase 86] showed the existence of d node disjoint paths between any pair of vertices. In Smit et al. [Smit 91] an algorithm is described that generates d node disjoint routes between two arbitrary nodes in the network. In this paper we present a simple and fast hardware implementation of this algorithm. It can be realized with standard components (Field Programmable Gate Arrays)
    • …
    corecore