39 research outputs found

    Quantitative phosphoproteomic analysis of prion-infected neuronal cells

    Get PDF
    Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal diseases associated with the conversion of the cellular prion protein (PrPC) to the abnormal prion protein (PrPSc). Since the molecular mechanisms in pathogenesis are widely unclear, we analyzed the global phospho-proteome and detected a differential pattern of tyrosine- and threonine phosphorylated proteins in PrPSc-replicating and pentosan polysulfate (PPS)-rescued N2a cells in two-dimensional gel electrophoresis. To quantify phosphorylated proteins, we performed a SILAC (stable isotope labeling by amino acids in cell culture) analysis and identified 105 proteins, which showed a regulated phosphorylation upon PrPSc infection. Among those proteins, we validated the dephosphorylation of stathmin and Cdc2 and the induced phosphorylation of cofilin in PrPSc-infected N2a cells in Western blot analyses. Our analysis showed for the first time a differentially regulated phospho-proteome in PrPSc infection, which could contribute to the establishment of novel protein markers and to the development of novel therapeutic intervention strategies in targeting prion-associated disease

    SNEV is an evolutionarily conserved splicing factor whose oligomerization is necessary for spliceosome assembly

    Get PDF
    We have isolated the human protein SNEV as downregulated in replicatively senescent cells. Sequence homology to the yeast splicing factor Prp19 suggested that SNEV might be the orthologue of Prp19 and therefore might also be involved in pre-mRNA splicing. We have used various approaches including gene complementation studies in yeast using a temperature sensitive mutant with a pleiotropic phenotype and SNEV immunodepletion from human HeLa nuclear extracts to determine its function. A human–yeast chimera was indeed capable of restoring the wild-type phenotype of the yeast mutant strain. In addition, immunodepletion of SNEV from human nuclear extracts resulted in a decrease of in vitro pre-mRNA splicing efficiency. Furthermore, as part of our analysis of protein–protein interactions within the CDC5L complex, we found that SNEV interacts with itself. The self-interaction domain was mapped to amino acids 56–74 in the protein's sequence and synthetic peptides derived from this region inhibit in vitro splicing by surprisingly interfering with spliceosome formation and stability. These results indicate that SNEV is the human orthologue of yeast PRP19, functions in splicing and that homo-oligomerization of SNEV in HeLa nuclear extract is essential for spliceosome assembly and that it might also be important for spliceosome stability

    Piezo1 integration of vascular architecture with physiological force

    Get PDF
    The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmaticš⁝⁾. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca²⁺-permeable non-selective cationic channels for detection of noxious mechanical impact⁜⁝⁸. Here we show Piezo1 (Fam38a) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. The importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear-stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx there was protease activation and spatial reorganization of endothelial cells to the polarity of the applied force. The data suggest that Piezo1 channels function as pivotal integrators in vascular biology

    Identification of peptide inhibitors of pre-mRNA splicing derived from the essential interaction domains of CDC5L and PLRG1

    No full text
    CDC5L and PLRG1 are both spliceosomal proteins that are highly conserved across species. They have both been shown to be part of sub- spliceosomal protein complexes that are essential for pre-mRNA splicing in yeast and humans. CDC5L and PLRG1 interact directly in vitro. This interaction is mediated by WD40 regions in PLRG1 and the C-terminal domain of CDC5L. In order to determine whether this interaction is important for the splicing mechanism, we have designed peptides corresponding to highly conserved sequences in the interaction domains of both proteins. These peptides were used in in vitro splicing experiments as competitors to the cognate sequences in the endogenous proteins. Certain peptides derived from the binding domains of both proteins were found to inhibit in vitro splicing. This splicing inhibition could be prevented by preincubating the peptides with the corresponding partner protein that had been expressed in Escherichia coli. The results from this study indicate that the interaction between CDC5L and PLRG1 is essential for pre-mRNA splicing and further demonstrate that small peptides can be used as effective splicing inhibitors

    snRNP protein expression enhances the formation of Cajal bodies containing p80-coilin and SMN

    No full text
    Splicing snRNPs (small nuclear ribonucleoproteins) are essential sub-units of the spliceosome. Here we report the establishment of stable cell lines expressing fluorescently tagged SmB, a core snRNP protein. Analysis of these stable cell lines has allowed us to characterize the nuclear pathway that leads to snRNP accumulation in nuclear speckles and has identified a limiting nucleolar step in the pathway that can be saturated by overexpression of Sm proteins. After nuclear import, newly assembled snRNPs accumulate first in a subset of Cajal bodies that contain both p80-coilin and the survival of motor neurons protein (SMN) and not in bodies that contain p80-coilin but lack SMN. Treatment of cells with leptomycin B (LMB) inhibits both the accumulation of snRNPs in nuclear bodies and their subsequent accumulation in speckles. The formation of Cajal bodies is enhanced by Sm protein expression and the assembly of new snRNPs. Formation of heterokaryons between HeLa cell lines expressing Sm proteins and primary cells that usually lack Cajal bodies results in the detection of Cajal bodies in primary cell nuclei. Transient over-expression of exogenous SmB alone is sufficient to induce correspondingly transient Cajal body formation in primary cells. These data indicate that the level of snRNP protein expression and snRNP assembly, rather than the expression levels of p80-coilin or SMN, may be a key trigger for Cajal body formation.</p

    A novel function for human factor C1 (HCF-1), a host protein required for herpes simplex virus infection, in pre-mRNA splicing

    No full text
    Human factor C1 (HCF-1) is needed for the expression of herpes simplex virus 1 (HSV-1) immediate-early genes in infected mammalian cells. Here, we provide evidence that HCF-1 is required for spliceosome assembly and splicing in mammalian nuclear extracts. HCF-1 interacts with complexes containing splicing snRNPs in uninfected mammalian cells and is a stable component of the spliceosome complex. We show that a missense mutation in HCF-1 in the BHK21 hamster cell line tsBN67, at the non-permissive temperature, inhibits the protein’s interaction with U1 and U5 splicing snRNPs, causes inefficient spliceosome assembly and inhibits splicing. Transient expression of wild-type HCF-1 in tsBN67 cells restores splicing at the non-permissive temperature. The inhibition of splicing in tsBN67 cells correlates with the temperature-sensitive cell cycle arrest phenotype, suggesting that HCF-1-dependent splicing events may be required for cell cycle progression
    corecore