3,402 research outputs found
Measurements of the spatial and energy distribution of thermal neutrons in uranium, heavy water lattices
"August 20, 1962."Statement of responsibility on title-page reads: P. S. Brown, T. J. Thompson, I. Kaplan, A. E. ProfioAlso issued by the first author as a Ph. D. thesis, Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 1962"NYO-10205."Includes bibliographical references (pages 185-210)Intracell activity distributions were measured in three natural uranium, heavy water lattices of 1. 010 inch diameter, aluminum clad rods on triangular spacings of 4. 5 inches, 5. 0 inches, and 5. 75 inches, respectively, and in a uranium, heavy water lattice of 0. 25 inch diameter, 1. 03% U 2235, aluminum-clad rods on a triangular spacing of 1. 25 inches. The distributions were measured with bare and cadmium-covered foils of gold, lutetium, and europium. The gold was used as a 1/v absorber to measure the thermal neutron density distribution. Because the activation cross sections of lutetium and europium depart considerably from 1/v behavior, their activation depends strongly on the thermal neutron energy spectrum. Hence, they were used to make integral measurements of the change in the neutron energy spectrum with position in the lattice cell. A method was developed for treating the partial absorption, by cadmium covers, of neutrons at the 0.46 ev europium resonance, and it was found possible to correct the europium activations to energy cutoffs just above and just below the resonance. The measured activity distributions were compared with those computed with the THERMOS code. In the natural uranium lattices, THERMOS gave excellent agreement with the measured gold activity distributions and very good agreement with the lutetium and europium distributions, indicating that THERMOS gives a very good estimate of the spatial and energy distribution of thermal neutrons in these lattices. In the enriched lattice, THERMOS gave a large overestimate of the activity dip in the fuel for all three detectors. The discrepancy was attributed to a breakdown in the Wigner-Seitz cylindrical cell approximation at small cell radii.However, the measured ratios of lutetium and europium activity to gold activity were in good agreement with the THERMOS values, indicating that THERMOS still gave a good estimate of the degree of spectral hardening. Neutron temperature calculations were made from the data by using Westcott effective cross sections. The temperature changes so calculated agreed well with those predicted by THERMOS. Disadvantage factors calculated by the Amouyal-Benoist-Horowitz (ABH) method were in excellent agreement with the measured values in the natural uranium lattices. The agreement was not as good in the enriched lattice because of an expected breakdown in the ABH method at small cell radii. Values of the thermal utilization obtained from experiment, from THERMOS, and with the ABH method were in excellent agreement for all the lattices studied.Radial and axial buckling measurements made with lutetium were in excellent agreement with similar measurements made with gold, indicating that the thermal neutron spectrum was uniform throughout the lattice tank. Measurements of intracell gold activity distributions made in off-center cells differed only slightly from those made in the central cell of the lattice, indicating that the radial flux distribution was almost completely separable into a macroscopic Jo and a microscopic cell distribution.U. S. Atomic Energy Commission contract AT(30-1)234
Ice Cores from the St. Elias Mountains, Yukon, Canada: Their Significance for Climate, Atmospheric Composition and Volcanism in the North Pacific Region
A major achievement in research supported by the Kluane Lake Research Station was the recovery, in 2001 –02, of a suite of cores from the icefields of the central St. Elias Mountains, Yukon, by teams of researchers from Canada, the United States, and Japan. This project led to the development of parallel, long (103 – 104 year) ice-core records of climate and atmospheric change over an altitudinal range of more than 2 km, from the Eclipse Icefield (3017 m) to the ice-covered plateau of Mt. Logan (5340 m). These efforts built on earlier work recovering single ice cores in this region. Comparison of these records has allowed for variations in climate and atmospheric composition to be linked with changes in the vertical structure and dynamics of the North Pacific atmosphere, providing a unique perspective on these changes over the Holocene. Owing to their privileged location, cores from the St. Elias Icefields also contain a remarkably detailed record of aerosols from various sources around or across the North Pacific. In this paper we review major scientific findings from the study of St. Elias Mountain ice cores, focusing on five main themes: (1) The record of stable water isotopes (δ18O, δD), which has unique characteristics that differ from those of Greenland, other Arctic ice cores, and even among sites in the St. Elias; (2) the snow accumulation history; (3) the record of pollen, biomass burning aerosol, and desert dust deposition; (4) the record of long-range air pollutant deposition (sulphate and lead); and (5) the record of paleo-volcanism. Our discussion draws on studies published since 2000, but based on older ice cores from the St. Elias Mountains obtained in 1980 and 1996
Microwave properties of Nd_0.5Sr_0.5MnO_3: a key role of the (x^2-y^2)-orbital effects
Transmittance of the colossal magnetoresistive compound Nd_0.5Sr_0.5MnO_3
showing metal-insulator phase transition has been studied by means of the
submm- and mm-wavelength band spectroscopy. An unusually high transparency of
the material provided direct evidence for the significant suppression of the
coherent Drude weight in the ferromagnetic metallic state. Melting of the
A-type antiferromagnetic states has been found to be responsible for a
considerable increase in the microwave transmission, which was observed at the
transition from the insulating to the metallic phase induced by magnetic field
or temperature. This investigation confirmed a dominant role of the
(x^2-y^2)-orbital degree of freedom in the low-energy optical properties of
Nd_0.5Sr_0.5MnO_3 and other doped manganites with planar (x^2-y^2)-orbital
order, as predicted theoretically. The results are discussed in terms of the
orbital-liquid concept.Comment: 8 pages, 3 figure
Recommended from our members
Large-scale discovery of enhancers from human heart tissue.
Development and function of the human heart depend on the dynamic control of tissue-specific gene expression by distant-acting transcriptional enhancers. To generate an accurate genome-wide map of human heart enhancers, we used an epigenomic enhancer discovery approach and identified ∼6,200 candidate enhancer sequences directly from fetal and adult human heart tissue. Consistent with their predicted function, these elements were markedly enriched near genes implicated in heart development, function and disease. To further validate their in vivo enhancer activity, we tested 65 of these human sequences in a transgenic mouse enhancer assay and observed that 43 (66%) drove reproducible reporter gene expression in the heart. These results support the discovery of a genome-wide set of noncoding sequences highly enriched in human heart enhancers that is likely to facilitate downstream studies of the role of enhancers in development and pathological conditions of the heart
On CP Asymmetries in Two-, Three- and Four-Body D Decays
Indirect and direct CP violations have been established in K_L and B_d
decays. They have been found in two-body decay channels -- with the exception
of K_L to pi^+ pi^- e^+ e^- transitions. Evidence for direct CP asymmetry has
just appeared in LHCb data on A_{CP}(D^0 to K^+ K^-) - A_{CP}(D^0 to pi^+ pi^-)
with 3.5 sigma significance. Manifestations of New Dynamics (ND) can appear in
CP asymmetries just below experimental bounds. We discuss D^{\pm}_{(s)},
D^0/\bar D^0 and D_L/D_S transitions to 2-, 3- and 4-body final states with a
comment on predictions for inclusive vs. exclusive CP asymmetries. In
particular we discuss T asymmetries in D to h_1 h_2 l^+ l^- in analogy with K_L
to pi^+ pi^- e^+ e^- transitions due to interference between M1, internal
bremsstrahlung and possible E1 amplitudes. Such an effect depends on the
strength of CP violation originating from the ND -- as discussed here for
Little Higgs Models with T parity and non-minimal Higgs sectors -- but also in
the interferences between these amplitudes even in the Standard Model (SM).
More general lessons can be learnt for T asymmetries in non-leptonic D decays
like D to h_1h_2 h_3 h_4. Such manifestations of ND can be tested at LHCb and
other Super-Flavour Factories like the projects at KEK near Tokyo and at Tor
Vergata/Frascati near Rome.Comment: 27 pages, 6 figures. Revised with current results from LHCb and HFAG
and further interpretation
A Pluralistic Theory of Wordhood
What are words and how should we individuate them? There are two main answers on the philosophical market. For some, words are bundles of structural-functional features defining a unique performance profile. For others, words are non-eternal continuants individuated by their causal-historical ancestry. These conceptions offer competing views of the nature of words, and it seems natural to assume that at most one of them can capture the essence of wordhood. This paper makes a case for pluralism about wordhood: the view that there is a plurality of acceptable conceptions of the nature of words, none of which is uniquely entitled to inform us as to what wordhood consists in
The long-term evolution of the spin, pulse shape, and orbit of the accretion-powered millisecond pulsar SAX J1808.4-3658
We present a 7 yr timing study of the 2.5 ms X-ray pulsar SAX J1808.4-3658,
an X-ray transient with a recurrence time of ~2 yr, using data from the Rossi
X-ray Timing Explorer covering 4 transient outbursts (1998-2005). We verify
that the 401 Hz pulsation traces the spin frequency fundamental and not a
harmonic. Substantial pulse shape variability, both stochastic and systematic,
was observed during each outburst. Analysis of the systematic pulse shape
changes suggests that, as an outburst dims, the X-ray "hot spot" on the pulsar
surface drifts longitudinally and a second hot spot may appear. The overall
pulse shape variability limits the ability to measure spin frequency evolution
within a given X-ray outburst (and calls previous nudot measurements of this
source into question), with typical upper limits of |nudot| < 2.5x10^{-14} Hz/s
(2 sigma). However, combining data from all the outbursts shows with high (6
sigma) significance that the pulsar is undergoing long-term spin down at a rate
nudot = (-5.6+/-2.0)x10^{-16} Hz/s, with most of the spin evolution occurring
during X-ray quiescence. We discuss the possible contributions of magnetic
propeller torques, magnetic dipole radiation, and gravitational radiation to
the measured spin down, setting an upper limit of B < 1.5x10^8 G for the
pulsar's surface dipole magnetic field and and Q/I < 5x10^{-9} for the
fractional mass quadrupole moment. We also measured an orbital period
derivative of Pdot = (3.5+/-0.2)x10^{-12} s/s. This surprising large Pdot is
reminiscent of the large and quasi-cyclic orbital period variation observed in
the so-called "black widow" millisecond radio pulsars, supporting speculation
that SAX J1808.4-3658 may turn on as a radio pulsar during quiescence. In an
appendix we derive an improved (0.15 arcsec) source position from optical data.Comment: 22 pages, 10 figures; accepted for publication in Ap
Log-periodic route to fractal functions
Log-periodic oscillations have been found to decorate the usual power law
behavior found to describe the approach to a critical point, when the
continuous scale-invariance symmetry is partially broken into a discrete-scale
invariance (DSI) symmetry. We classify the `Weierstrass-type'' solutions of the
renormalization group equation F(x)= g(x)+(1/m)F(g x) into two classes
characterized by the amplitudes A(n) of the power law series expansion. These
two classes are separated by a novel ``critical'' point. Growth processes
(DLA), rupture, earthquake and financial crashes seem to be characterized by
oscillatory or bounded regular microscopic functions g(x) that lead to a slow
power law decay of A(n), giving strong log-periodic amplitudes. In contrast,
the regular function g(x) of statistical physics models with
``ferromagnetic''-type interactions at equibrium involves unbound logarithms of
polynomials of the control variable that lead to a fast exponential decay of
A(n) giving weak log-periodic amplitudes and smoothed observables. These two
classes of behavior can be traced back to the existence or abscence of
``antiferromagnetic'' or ``dipolar''-type interactions which, when present,
make the Green functions non-monotonous oscillatory and favor spatial modulated
patterns.Comment: Latex document of 29 pages + 20 ps figures, addition of a new
demonstration of the source of strong log-periodicity and of a justification
of the general offered classification, update of reference lis
Evidence for He I 10830 \AA~ absorption during the transit of a warm Neptune around the M-dwarf GJ 3470 with the Habitable-zone Planet Finder
Understanding the dynamics and kinematics of out-flowing atmospheres of hot
and warm exoplanets is crucial to understanding the origins and evolutionary
history of the exoplanets near the evaporation desert. Recently, ground based
measurements of the meta-stable Helium atom's resonant absorption at 10830
\AA~has become a powerful probe of the base environment which is driving the
outflow of exoplanet atmospheres. We report evidence for the He I 10830 \AA~in
absorption (equivalent width \AA) in the exosphere of
a warm Neptune orbiting the M-dwarf GJ 3470, during three transits using the
Habitable Zone Planet Finder (HPF) near infrared spectrograph. This marks the
first reported evidence for He I 10830 \AA\, atmospheric absorption for a
planet orbiting an M-dwarf. Our detected absorption is broad and its
blueshifted wing extends to -36 km/sec, the largest reported in the literature
to date. We modelled the state of Helium atoms in the exosphere of GJ3470b
based on assumptions on the UV and X-ray flux of GJ 3470, and found our
measurement of flux-weighted column density of meta-stable state Helium
, derived from our transit
observations, to be consistent with model, within its uncertainties. The
methodology developed here will be useful to study and constrain the
atmospheric outflow models of other exoplanets like GJ 3470b which are near the
edge of the evaporation desert.Comment: Accepted in Ap
- …