294 research outputs found

    C32, A Young Star Cluster in IC 1613

    Get PDF
    The Local Group irregular galaxy IC 1613 has remained an enigma for many years because of its apparent lack of star clusters. We report the successful search for clusters among several of the candidate objects identified many years ago on photographic plates. We have used a single HST WFPC2 pointing and a series of images obtained with the WIYN telescope under exceptional seeing conditions, examining a total of 23 of the previously published candidates. All but six of these objects were found to be either asterisms or background galaxies. Five of the six remaining candidates possibly are small, sparse clusters and the sixth, C32, is an obvious cluster. It is a compact, young object, with an age of less than 10 million years and a total absolute magnitude of M_V = -5.78+/-0.16 within a radius of 13 pc.Comment: 5 pages, 5 figures, to be published in the May 2000 issue of the PAS

    Identification and Analysis of Young Star Cluster Candidates in M31

    Get PDF
    We present a method for finding clusters of young stars in M31 using broadband WFPC2 data from the HST data archive. Applying our identification method to 13 WFPC2 fields, covering an area of ~60 arcmin^2, has revealed 79 new candidate young star clusters in these portions of the M31 disk. Most of these clusters are small (~<5 pc) young (~10-200 Myr) star groups located within large OB associations. We have estimated the reddening values and the ages of each candidate individually by fitting isochrones to the stellar photometry. We provide a catalog of the candidates including rough approximations of their reddenings and ages. We also look for patterns of cluster formation with galactocentric distance, but our rough estimates are not precise enough to reveal any clear patterns.Comment: 32 pages, 9 figures, 5 tables, accepted to Ap

    WFPC2 Observations of Massive and Compact Young Star Clusters in M31

    Get PDF
    We present color magnitude diagrams of four blue massive and compact star clusters in M31: G38, G44, G94, and G293. The diagrams of the four clusters reveal a well-populated upper main sequence and various numbers of supergiants. The U-B and B-V colors of the upper main sequence stars are used to determine reddening estimates of the different lines of sight in the M31 disk. Reddening values range from E(B-V) = 0.20 +/- 0.10 to 0.31 +/- 0.11. We statistically remove field stars on the basis of completeness, magnitude and color. Isochrone fits to the field-subtracted, reddening-corrected diagrams yield age estimates ranging from 63 +/- 15 Myr to 160 +/- 60 Myr. Implications for the recent evolution of the disk near NGC 206 are discussed.Comment: 17 pages, Latex, ApJ, in Pres

    UV Observations of NGC 205

    Get PDF
    Low resolution IUE observations of the dwarf elliptical galaxy NGC 205 show that the UV spectral energy distribution (SED) of the galaxy is relatively flat. Spectra centered on the nucleus and on a region north of the nucleus show evidence of recent bursts of star formation which contribute strongly to the UV spectral energy distribution. The UV spectra was fit with a composite spectrum based on a Miller-Scalo initial mass function, an underlying older population (modelled using the UV spectrum of 47 Tuc), and an extinction based on a SMC-like extinction cure. This fit implies that the total mass of young stars (with M equal to or greater than 1 solar mass) in the galaxy is approx. 7x10(5) solar mass, which can be compared to the total mass of globular cluster like stars in the galaxy of approx. 8x10(7) solar mass

    HST Studies of the WLM Galaxy. I. The Age and Metallicity of the Globular Cluster

    Full text link
    We have obtained V and I images of the lone globular cluster that belongs to the dwarf Local Group irregular galaxy known as WLM. The color-magnitude diagram of the cluster shows that it is a normal old globular cluster with a well-defined giant branch reaching to M_V=-2.5, a horizontal branch at M_V=+0.5, and a sub-giant branch extending to our photometry limit of M_V=+2.0. A best fit to theoretical isochrones indicates that this cluster has a metallicity of [Fe/H]=-1.52\pm0.08 and an age of 14.8\pm0.6 Gyr, thus indicating that it is similar to normal old halo globulars in our Galaxy. From the fit we also find that the distance modulus of the cluster is 24.73\pm0.07 and the extinction is A_V=0.07\pm0.06, both values that agree within the errors with data obtained for the galaxy itself by others. We conclude that this normal massive cluster was able to form during the formation of WLM, despite the parent galaxy's very small intrinsic mass and size.Comment: 14 pages, 5 figures, 1 tabl

    The Star Formation History of LGS 3

    Get PDF
    We have determined the distance and star formation history of the Local Group dwarf galaxy LGS 3 from deep Hubble Space Telescope WFPC2 observations. LGS 3 is intriguing because ground-based observations showed that, while its stellar population is dominated by old, metal-poor stars, there is a handful of young, blue stars. Also, the presence of HI gas makes this a possible ``transition object'' between dwarf spheroidal and dwarf irregular galaxies. The HST data are deep enough to detect the horizontal branch and young main sequence for the first time. A new distance of D=620+/-20 kpc has been measured from the positions of the TRGB, the red clump, and the horizontal branch. The mean metallicity of the stars older than 8 Gyr is Fe/H = -1.5 +/- 0.3. The most recent generation of stars has Fe/H ~ -1. For the first few Gyr the global star formation rate was several times higher than the historical average and has been fairly constant since then. However, we do see significant changes in stellar populations and star formation history with radial position in the galaxy. Most of the young stars are found in the central 63 pc (21''), where the star formation rate has been relatively constant, while the outer parts have had a declining star formation rate.Comment: To appear in The Astrophysical Journal, 26 pages, 14 figures, uses AASTe

    Clues to Nuclear Star Cluster Formation from Edge-on Spirals

    Get PDF
    We find 9 nuclear cluster candidates in a sample of 14 edge-on, late-type galaxies observed with HST/ACS. These clusters have magnitudes (M_I ~ -11) and sizes (r_eff ~ 3pc) similar to those found in previous studies of face-on, late-type spirals and dE galaxies. However, three of the nuclear clusters are significantly flattened and show evidence for multiple, coincident structural components. The elongations of these three clusters are aligned to within 10 degrees of the galaxies' major axes. Structurally, the flattened clusters are well fit by a combination of a spheroid and a disk or ring. The nuclear cluster disks/rings have F606W-F814W (~V-I) colors 0.3-0.6 magnitudes bluer than the spheroid components, suggesting that the stars in these components have ages < 1 Gyr. In NGC 4244, the nearest of the nuclear clusters, we further constrain the stellar populations and provide a lower limit on the dynamical mass via spectroscopy. We also present tentative evidence that another of the nuclear clusters (in NGC 4206) may also host a supermassive black hole. Based on our observational results we propose an in situ formation mechanism for nuclear clusters in which stars form episodically in compact nuclear disks, and then lose angular momentum or heat vertically to form an older spheroidal structure. We estimate the period between star formation episodes to be 0.5 Gyr and discuss possible mechanisms for tranforming the disk-like components into spheroids. We also note the connection between our objects and massive globular clusters (e.g. ω\omega Cen), UCDs, and SMBHs. (Abridged)Comment: Accepted for publication in the A

    A Survey of Local Group Galaxies Currently Forming Stars. I. UBVRI Photometry of Stars in M31 and M33

    Full text link
    We present UBVRI photometry obtained from Mosaic images of M31 and M33 using the KPNO 4-m telescope. The survey covers 2.2 sq degrees of M31, and 0.8 sq degrees of M33, chosen so as to include all of the regions currently active in forming massive stars. The catalog contains 371,781 and 146,622 stars in M31 and M33, respectively, where every star has a counterpart (at least) in B, V, and R. We compare our photometry to previous studies. We provide cross references to the stars confirmed as members by spectroscopy, and compare the location of these to the complete set in color-magnitude diagrams. While follow-up spectroscopy is needed for many projects, we demonstrate the success of our photometry in being able to distinguish M31/M33 members from foreground Galactic stars. We also present the results of newly obtained spectroscopy, which identifies 34 newly confirmed members, including B-A supergiants, the earliest O star known in M31, and two new Luminous Blue Variable candidates whose spectra are similar to that of P Cygni.Comment: Accepted by the Astronomical Journal. A version with higher resolution figures can be found at: http://www.lowell.edu/users/massey/M3133.pdf.g
    • …
    corecore