4 research outputs found

    How inertial lift affects the dynamics of a microswimmer in Poiseuille flow

    Get PDF
    The transport of motile microorganisms is strongly influenced by fluid flows that are ubiquitous in biological environments. Here we demonstrate the impact of fluid inertia. We analyze the dynamics of a microswimmer in pressure-driven Poiseuille flow, where fluid inertia is small but non-negligible. Using perturbation theory and the reciprocal theorem, we show that in addition to the classical inertial lift of passive particles, the active nature generates a ‘swimming lift’, which we evaluate for neutral and pusher/puller-type swimmers. Accounting for fluid inertia engenders a rich spectrum of complex dynamics including bistable states, where tumbling coexists with stable centerline swimming or swinging. The dynamics is sensitive to the swimmer’s hydrodynamic signature and goes well beyond the findings at vanishing fluid inertia. Our work will have non-trivial implications on the transport and dispersion of active suspensions in microchannels.TU Berlin, Open-Access-Mittel - 2022DFG, 163436311, SFB 910: Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzept

    Correlating Chemical Reaction and Mass Transport in Hydrogen-based Direct Reduction of Iron Oxide

    Full text link
    Steelmaking contributes 8% to the total CO2 emissions globally, primarily due to coal-based iron ore reduction. Clean hydrogen-based ironmaking has variable performance because the dominant gas-solid reduction mechanism is set by the defects and pores inside the mm-nm sized oxide particles that change significantly as the reaction progresses. While these governing dynamics are essential to establish continuous flow of iron and its ores through reactors, the direct link between agglomeration and chemistry is still contested due to missing measurements. In this work, we directly measure the connection between chemistry and agglomeration in the smallest iron oxides relevant to magnetite ores. Using synthesized spherical 10-nm magnetite particles reacting in H2, we resolve the formation and consumption of w\"ustite (FeO) - the step most commonly attributed to agglomeration. Using X-ray scattering and microscopy, we resolve crystallographic anisotropy in the rate of the initial reaction, which becomes isotropic as the material sinters. Complementing with imaging, we demonstrate how the particles self-assemble, subsequently react and sinter into ~100x oblong grains. Our insights into how morphologically uniform iron oxide particles react and agglomerate H2 reduction enable future size-dependent models to effectively describe the multiscale iron ore reduction
    corecore