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How inertial lift affects the dynamics of a
microswimmer in Poiseuille flow
Akash Choudhary 1✉, Subhechchha Paul2, Felix Rühle 1 & Holger Stark 2✉

The transport of motile microorganisms is strongly influenced by fluid flows that are ubi-

quitous in biological environments. Here we demonstrate the impact of fluid inertia. We

analyze the dynamics of a microswimmer in pressure-driven Poiseuille flow, where fluid

inertia is small but non-negligible. Using perturbation theory and the reciprocal theorem, we

show that in addition to the classical inertial lift of passive particles, the active nature gen-

erates a ‘swimming lift’, which we evaluate for neutral and pusher/puller-type swimmers.

Accounting for fluid inertia engenders a rich spectrum of complex dynamics including bis-

table states, where tumbling coexists with stable centerline swimming or swinging. The

dynamics is sensitive to the swimmer’s hydrodynamic signature and goes well beyond the

findings at vanishing fluid inertia. Our work will have non-trivial implications on the transport

and dispersion of active suspensions in microchannels.
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Self-propelling microswimmers often experience dynamic
fluid environments and confinements, for example, patho-
gens in lung mucus1, microorganisms in laminar flow

through porous matrix2, and sperm cells in the Fallopian tubes3.
Often these swimmers interact with micro-scale flows and
boundaries4 to enhance survival probability5 and biofilm
formation6 or cause intriguing collective patterns7. Their envi-
sioned artificial counterparts—designed to execute in vitro drug
delivery—also would have to interact with the dynamic condi-
tions of such biological flows8,9. Examining the dynamics of
microswimmers can help us get insights into the dispersion of
active suspensions10, it can also provide guidelines for the rational
fabrication of microfluidic drug delivery and for minimizing
biofilm formation in biomedical equipments11.

Sheared flows in biological systems and microchannels impose
substantial vorticity on the swimmer, which results in continuous
tumbling. Past experimental and computational studies have
shown that this tumbling, in conjunction with surface interac-
tions, cause upstream swimming known as rheotaxis12–15. Zöttl
and Stark16,17 developed a theoretical model in the Stokes regime
that captured swimming in Poiseuille flows. They reported
upstream swinging and, for sufficiently strong flows, downstream
tumbling states in planar and cylindrical channels. In two
dimensions the phase portrait was found to be equivalent to that
of a non-linear oscillator such as the pendulum. Related experi-
mental and theoretical research studied single swimmer
trajectories18,19, shear-induced trapping20, and focusing of pho-
totactic algae21 or magnetotactic bacteria22,23. Most recently,
Peng and Brady10 investigated Taylor dispersion in active
suspensions.

In recent years, experimental and theoretical studies have
shown how inertia affects the unsteady propulsion of ciliated24,25

and larger swimmers26,27. The influence of particle inertia has
been discussed in refs. 28,29. With the recent advent of high-speed
tunable microswimmers9,30,31, understanding the effects of inertia
can help in effective designs of biomedical devices. However, little
is known how fluid inertia affects swimmer dynamics in sheared
flows, which we will address in this article.

For passive particles, the Segré−Silberberg effect at finite
Reynolds numbers has been known for decades32,33. Inertial lift
forces cause cross-stream migration and eventually focus particles
roughly halfway between channel center and walls. This effect has
initiated major advances in cell-sorting and flow cytometry
techniques in the newly developing field of inertial
microfluidics34,35. To understand it, we note that a rigid particle
resists the strain in background flow and generates a stresslet
disturbance in the fluid decaying as 1/r2 36. The disturbance
interacts with the curvature of the background flow and the
channel walls, which in the presence of fluid inertia results in
counter-acting shear-gradient and wall-induced lift forces that
cause inertial focusing37.

In his seminal work, Saffman38 considered a particle moving
relative to a uniform shear flow under the influence of an external
(gravitational) force. He showed that it also experiences a cross-
streamline lift. Similar investigations were presented in recent
works on electrophoresis39–43. They stressed the key role of the
leading hydrodynamic multipole generated by the particle.

Microswimmers also move relative to an applied background
flow. In this article, we consider the generic source–dipole and
force–dipole microswimmers and calculate the resulting swim-
ming lift in a planar Poiseuille flow when fluid inertia is small but
non-negligible. We demonstrate that, in combination with the
passive inertial lift, this gives rise to rich complex dynamics in
channel flow, which goes well beyond the findings in refs. 16,17.
Our work thereby opens up a new direction in the field of active

matter by connecting research on microswimmers to the field of
inertial microfluidics with all its biomedical applications34,35.

In the following, we consider a spherical swimmer of radius a
that self-propels with velocity vs= vsp in a two-dimensional
Poiseuille flow vf= vm[1− (x/w)2] ez where vm is the maximum
flow velocity and w the half channel width (see Fig. 1). The
overdamped motion of a noise-free swimmer can be described by
dynamic equations for swimmer position (r) and orientation (p)
vector,

_r ¼ pþ �vf þ F ðx;ψÞ ex ; _p ¼ 1
2
ð∇ ´ �vf Þ ´ p; ð1Þ

where we rescaled velocities by swimming speed vs, lengths by w,
and time by w/vs. F denotes the total inertial lift velocity, which
comprises the passive and swimming lift. It vanishes when fluid
inertia becomes negligible and the system moves in the Stokesian
regime as studied in ref. 16. The passive inertial lift is well-
explored37,44,45 and, except in close vicinity to the channel walls,
can be well approximated by FpassiveðxÞ � Rep κ�vm xð1�
x2=x2eqÞ (see “Methods” section). Here, xeq denotes the stable
equilibrium positions, κ= a/2w the ratio of swimmer radius to
channel width, and �vm ¼ vm=vs is the scaled centerline flow
velocity. The swimmer Reynolds number Rep= ρvmκa/μ is based
on the characteristic shear around a swimmer; ρ and μ represent
the fluid density and viscosity, respectively.

Results and discussion
Neutral swimmers. To evaluate the additional swimming lift
F swim, we find the disturbance field v created by the micro-
swimmer using the continuity and the quasi-steady
Navier–Stokes equations in the co-moving swimmer frame
f~x;~y;~zg,

~∇ � v ¼ 0; Rep f ¼ ~∇ � σ: ð2Þ
Here, f ¼ v � ~∇v1 þ v1 � ~∇v þ v � ~∇v results from the con-
vective acceleration with v∞ the Poiseuille flow field in the
swimmer frame, and σ ¼ �pIþ 2e is the Newtonian stress ten-
sor of the disturbance field, where p and e represent pressure and
the rate-of-strain tensor, respectively. First, we consider a neu-
trally buoyant microswimmer that generates a source–dipole
disturbance that, in leading order, resembles the flow field gen-
erated by some ciliated microswimmers46 and active droplets47,48.
Before evaluating the inertial swimming lift, we will perform an
order-of-magnitude analysis to predict its scaling for small Rep.
This will provide a fundamental understanding of how weak
inertia affects swimmer motion.

Fig. 1 A microswimmer in Poiseuille flow. A spherical microswimmer with
velocity vsp moves in a planar Poiseuille flow inside a channel with half
width w. The coordinate frame f~x;~y;~zg co-moves with the swimmer.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00794-y

2 COMMUNICATIONS PHYSICS |            (2022) 5:14 | https://doi.org/10.1038/s42005-021-00794-y | www.nature.com/commsphys

www.nature.com/commsphys


The classical analyses of Oseen49 and Saffman38 demonstrated
that the magnitude of inertial perturbations increases with
distance from the swimmer until an asymptotic “cross-over
radius”, beyond which the perturbations become singular. For the

current swimmer system, the cross-over radius is rc � Re �1=2
p

38

that divides the entire domain in inner (regular) and outer
(singular) regions. Substitution of rc in the hydrodynamic
signature of a neutral swimmer (~1/r3) suggests that singular
lift is inferior to regular lift, i.e., F swim / Rep (see Supplemen-
tary Note 2). This is in contrast to the Saffman lift of a forced

particle, where the singular contribution / Re 1=2
p dominates.

Hence, we implement a regular perturbation expansion, which
turns the Navier–Stokes equations (2) into Stokes problems of
zeroth (~∇ � σ0 ¼ 0) and first order (~∇ � σ1 ¼ f 0), as detailed in
the “Methods” section. Using the reciprocal theorem, we are able
to calculate the swimming lift velocity from the first-order
problem37

F swim ¼ �Rep
6π

Z
V
vt � f 0 dV : ð3Þ

Here, the auxiliary velocity field vt belongs to a forced particle
moving along the x-direction37. The convective acceleration f0
corresponds to the Stokes solution v0 of the microswimmer
consisting of a source–dipole field, which we adopt from the
squirmer model50–52, and a stresslet generated by the shearing
background flow with rate-of-strain tensor e∞,

v0 ¼
~vsp

2~r3
� 3~r~r

~r2
� I

� �
� 5e1:~r~r

2~r5
~r � ~r

~r2

� �
þ e1�~r

~r5

� �
; ð4Þ

where ~vs ¼ vs=ðvmκÞ. We use here the far-field approximation to
represent the flow field around microswimmers, which also
strictly implies that the microswimmers should not come too
close to the bounding walls. Using the corresponding f0 in Eq. 3
and e∞ for the Poiseuille flow, results in the inertial swimming lift
velocity given in units of vs: F swim ¼ �ð7=6ÞRep x cosψ. Thus,
the total inertial lift to be used in Eq. 1 becomes

F ¼ Rep κ�vmx 1� x2

x2eq

 !
� x cosψ

" #
: ð5Þ

where we skip the factor 7/6 for simplicity. We also calculated the
modification to z-direction swimmer velocity and y-direction
rotational velocity. The former is �5=18Repx sinψ and latter is
found to be identically zero at the present order of
approximation.

The inertial lift profile of Eq. 5 causes a complex dynamics of
the microswimmer governed by Eq. 1, which we now explore step
by step. First of all, we identify two fixed points in the x−ψ plane
at x= 0, with the microswimmer either swimming upstream
along the centerline (ψ= 0) or downstream (ψ= ±π). A linear
stability analysis reveals the following approximate eigenvalues
for these fixed points:

λ 1 �
Rep
2

�1þ κ�vm
� �

± i �v1=2m ;

λ2 �
Rep
2

1þ κ�vm
� �

± �v1=2m :

ð6Þ

Downstream swimming corresponds to a saddle fixed point (λ2),
while upstream swimming along the centerline (λ1) is stable for
weak flows (�vm < κ�1) and unstable otherwise. The inertial lift
profile plotted in Fig. 2 for a moderate flow strength and for
different swimmer orientations ψ, shows the passive lift velocity
at ψ= π/2 with an unstable position in the center and the two
inertial focusing points at ±xeq. In the presence of the swimming

lift, the centerline position is stabilized at ψ= 0. For strong flows
(�vm > κ�1) the centerline position becomes unstable. However,
the swimmer cannot focus on a non-zero x position, because due
to the non-zero vorticity of the Poiseuille flow, it continuously
tumbles while drifting downstream. In the state diagram
presented in Fig. 3a, we vary swimmer size κ versus flow strength
�vm and find these two limiting cases in the lower left and upper
right region, respectively. Around the dashed stability line,
κ ¼ �v�1

m , we observe that fluid inertia engenders rich dynamics,
which we discuss now.

We first look at smaller microswimmers with κ≲ 0.1 and move
along the white dashed line in the state diagram with increasing
�vm. At �vm < 1 the swimmer quickly reaches the centerline and
moves upstream, while at moderate flow velocities �vm > 1, it is
drifted downstream by the Poiseuille flow and slowly relaxes
towards the centerline (see Fig. 3b for a trajectory in x–z plane).
On further increasing �vm, a subcritical Hopf bifurcation occurs53,
where the stable centerline state and tumbling motion around xeq
coexist (see Fig. 3c). The schematic phase portrait in Fig. 3f shows
how the stable fixed point and tumbling, a type of stable limit
cycle, are separated by an unstable limit cycle. According to the
bifurcation schematic next to the state diagram, the unstable limit
cycle shrinks to zero and the fixed point becomes unstable.
Hence, one observes a pure tumbling state (see Fig. 3d) with an
amplitude that shrinks with increasing �vm.

For larger microswimmers, we first concentrate on the white
dashed line at κ > 0.23. When the fixed point becomes unstable at
κ ¼ �v�1

m , a supercritical Hopf bifurcation occurs; the stable limit
cycle, where the microswimmer performs a swinging motion
about the centerline, gradually expands and then splits into two
stable tumbling limit cycles. However, in the range 0.1 < κ < 0.23
the swinging limit cycle first enters a small region where it
coexists with the tumbling state (multiple limit cycles)54 (see
Fig. 3e). They are separated by an unstable limit cycle as the
schematic phase portrait in Fig. 3g shows. As the flow rate further
increases, the two inner limit cycles annihilate each other and the
pure tumbling state remains.

In experiments, the time period of the swinging and tumbling
states, as well as the drift velocity of the microswimmer along the
channel axis, are measurable quantities. Figure 4a shows the time
period T of the oscillatory states exhibited by the source–dipole
swimmer for different rescaled swimmer sizes κ. At κ= 0.15, the
two branches have an overlapping �vm region. Here, swinging and
tumbling states coexist as indicated in Fig. 3a and the swimmer
state depends on the initial condition. Dashed lines indicate sharp
transitions between the two states. As already observed in Fig. 3a,
larger swimmers enter the oscillatory states at lower flow rates. In

Fig. 2 Lift-velocity profile of a neutral swimmer. Inertial lift-velocity
profiles of a source–dipole or neutral microswimmer for different
orientation angles ψ for moderate flow speed �vm ¼ 6, κ= 0.1, and
xeq= ±0.65.
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Fig. 3 Dynamics of a neutral microswimmer. a State diagram of a neutral microswimmer. To the left of the black dashed curve, κ ¼ �v�1
m , upstream-directed

swimming along the centerline is stable. Along the white dashed lines at κ= 0.25 and κ= 0.07, the bifurcation characteristics are sketched on the right.
Swimmer trajectories for different initial x positions [x0= 0.9 (green), x0= 0.4 (blue), x0= 0.1 (black)] and parameters: b �vm ¼ 8, κ= 0.1; c �vm ¼ 11:5,
κ= 0.05; d �vm ¼ 14, κ= 0.1; e �vm ¼ 9, κ= 0.125. Other parameters are Rep= 0.1, and xeq= ±0.65. The insets show zoomed-in trajectories in steady state.
f, g Schematic phase portraits for the trajectories in (c) and (e), respectively. The solid and dashed red lines depict stable and unstable limit cycles,
respectively.
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the swinging state, we obtain a weak dependence of the time
period on �vm. Only close to the transition T rises with �vm and
then, in the tumbling state, it decreases slowly. Figure 4b shows
that the drift speed along the channel axis rises linearly with �vm
with a slope one in the state of centerline swimming as expected.
Also, in the swinging state (κ= 0.15 and 0.25) the slope is close to
one. After the sharp drop to the tumbling state indicated by the
dashed line, all three curves fall again nearly on top of each other.
The slope of these straight lines is around 0.5, indicating that
tumbling occurs outside of the centerline.

Pusher/puller-type swimmers. So far we have concentrated on
microswimmers that generate a source–dipole flow field. Since the
swimming lift crucially depends on the swimmer’s hydrodynamic
signature and thus on its propulsion mechanism, we also expect a
fundamentally distinct dynamics. Microswimmers that self-
propel by rotating or beating flagella, such as E. coli and Chla-
mydomonas, generate a force–dipole flow field at the leading

order55,56: v0 ¼ P~vsr �1
r3 þ 3 r�pð Þ2

r5

h i
. Here P is the dimensionless

force–dipole strength normalized by 8πμa2vs, which depends on
the swimming mechanism56–58. Earlier studies on E. coli56,58,59

and Chlamydomonas60 suggest that jPj varies roughly between
0.04 and 0.3.

The slow decay of the force–dipole field (∼1/r2) suggests that
the swimming lift obtained from singular perturbation now also
is linear in Rep as the lift evaluated within regular perturbation
theory (see Supplementary Note 2). Thus, similar to the case of
passive inertial lift37,45, one can use either regular perturbation
theory or matched asymptotic expansions to calculate the
swimming lift in leading order of Rep. A comparison of results
from singular perturbation approach of Asmolov45 and results
using regular perturbation theory37, which strictly requires a
channel Reynolds number Rec≪ 1, shows a close match of the
lift-force profiles at Rec= 15 (see Fig. 8 in45). This suggests a
smooth transition between the two approaches. Therefore, we
continue with the approach used for neutral microswimmers
and employ regular perturbation theory in combination with
the reciprocal theorem in Eq. 3, as detailed in the Supplemen-
tary Note 3. The slower decay of the force–dipole field poses an
additional challenge: one has to account for the finite
integration domain of the microchannel, otherwise the lift
would diverge logarithmically. Thus, we correct the zeroth-
order flow field v0 by including wall terms, which we obtain
from the method of reflections. Our investigation shows that
the angular dependence of the force–dipole swimming lift,
F swim / sin 2ψ, differs from that of the source dipole. Fitting
the numerical results for F swim, we can approximate the total

inertial lift velocity in units of vs by

F ¼ Rep κ �vmx 1� x2

x2eq

 !
þ P 1� 2x2

� �
sin 2ψ=2

" #
:

In Fig. 5a, the lift-velocity profile for a force dipole shows a
clear difference to the profile in Fig. 2. Compared to the passive
lift (ψ= 0, π/2), the profile either shifts up or down for varying ψ.
Thus, depending on P and �vmκ, the fixed point (F ¼ 0) in one
channel half can vanish completely. We note that the profiles of
force dipoles with the same strength but opposite signs follow
from each other by adding π/2 to ψ.

Although the fixed points are identical to the previous case, the
stability analysis with the eigenvalues

λ1 �
Rep
2

κ�vm ± i �v1=2m and λ2 �
Rep
2

κ�vm ±�v1=2m :

reveals that upstream swimming (ψ= 0) is always unstable, as
suggested by the lift velocity. Through an unstable spiral, the
trajectories enter a stable limit cycle, which for lower flow rates
corresponds to a swinging motion about the centerline. The
swimmer effectively swims upstream for �vm < 1 as depicted in
Fig. 5b, while it moves downstream for �vm > 1, similar to the
black trajectory in Fig. 3e.

Hydrodynamic wall interactions of the force–dipole field add
weak modifications of the order of κ2 and κ3 to the evolution
equations of position and orientation, respectively16,61–63. There-
fore, they mainly influence the dynamics when the flow rates are
weak, i.e., for upstream swinging motion. Figure 5c shows a
pusher approaching the wall as the hydrodynamic interactions
are attractive56. Since the strong vorticity near the walls re-orients
the swimmer, it will ultimately oscillate between both walls. In
contrast, pullers are hydrodynamically repelled from walls16 and
hence swim in a swinging limit cycle with an amplitude smaller
compared to Fig. 5b. Finally, Fig. 5d shows that downstream
swinging in stronger flows is hardly affected. For neutral
swimmers, the wall effects are weaker by an additional factor of
κ62–65 and we verified that they do not have a significant effect on
the dynamics.

In Fig. 6a, b we show the resulting state diagrams for a puller
and pusher, respectively. The diagrams are clearly disparate to
that of a neutral swimmer (Fig. 3a). For flow rates �vm below one,
larger pullers swim upstream along the centerline (region I) since
hydrodynamic wall interactions dominate the inertial lift and
push pullers to the center. Otherwise, pushers and pullers show
upstream swinging (region II) and for �vm > 1 downstream
swinging (region III). At even larger �vm they transition into the
tumbling state (region IV). For pushers, this transition occurs at
larger �vm due to the hydrodynamic wall interactions. Finally, in

Fig. 4 Time period and drift speed. a Time period of swinging and tumbling motion and b drift speed along the channel axis plotted versus �vm for different κ.
The dashed lines indicate transitions between the two swimming states. Time period and drift speed are given in units of w/vs and vs, respectively.
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Supplementary Note 4, we provide the time period of the
oscillatory states and the axial drift speed as a function of �vm for
pusher and puller with P ¼ ± 0:3. Note that at zero Rep with
hydrodynamic wall interactions included, the swimmer states
realized at a specific flow speed �vm differ from that in Fig. 6. For
sufficiently large �vm pushers always show stable swinging around
the center line, while pullers either move along the centerline or
tumble close to the wall depending on their initial conditions16.

Conclusions
In summary, we have studied how swimming at low fluid inertia
in Poiseuille flow adds a swimming lift to the known passive
inertial lift velocity. We have concentrated on the generic
source–dipole and force–dipole microswimmers and showed that
their swimming lift velocities depend differently on the lateral
swimmer position and orientation. This gives rise to the emer-
gence of complex dynamics including bistable states, where
tumbling coexists with stable centerline swimming or swinging.
The Reynolds number determines the overall dynamics relative to
the flow speed. Deriving a non-linear oscillator equation for ψ in
full analogy to ref. 16, reveals a reduced relaxation time / Re�1

p
towards the stationary states.

Recent experimental studies14,20,57,66 operate within the para-
meter ranges of microswimmer size, 10−200 μm, and channel
width, 100−500 μm. Thus for the maximum flow speed vm ~ 1
mm/s, Rep ranges from 0.001 to 0.1 and the time taken to attain
steady states, w/(vsRep), roughly varies from 10 to 103 s for narrow
microchannels. These estimates suggest that effects of fluid inertia
are observable for large microswimmers (≳50 μm) and moderate
to strong flows. For instance, Volvox carteri will be of interest as it
has a radius of ~200 μm and swims with ~200 μm/s57. Addition-
ally, artificial microswimmers with tunable high speeds larger than
200 μm/s exist9,30,31. All this should offer the possibility to
experimentally observe the dynamic features reported here at
small but non-negligible fluid inertia depending on the hydro-
dynamic signature of a microswimmer. Furthermore, the current
insights may encourage investigations in marine ecosystem, where
recent literature67,68 suggests that inertial lift can drive planktons
out of the turbulent eddies and induce plankton blooms.

Our work extends the research on microswimmers by bringing
the role of fluid inertia into focus, which has not been looked at
so far. For passive particles, this has spawned the field of inertial
microfluidics34,35. We envisage a similar development for
microswimmers, which offers numerous aspects to look at. For
example, elongated microswimmers perform Jeffery orbits69,

Fig. 5 Lift-velocity profile and dynamics of a force–dipole swimmer. a Inertial lift-velocity profile of a pusher (P ¼ 0:3) with κ= 0.1, xeq= ±0.65, and
�vm ¼ 3. b Upstream swinging trajectories for �vm ¼ 1. The bottom row shows hydrodynamics wall effects on the upstream and downstream motion of a
pusher (P ¼ 0:3) and puller (P ¼ �0:3): c �vm ¼ 1, d �vm ¼ 3. The solid blue line depicts the limit cycle amplitude of (b). Rep= 0.1 is used in all figures.

Fig. 6 State diagram of a force–dipole swimmer. Particle size κ versus flow speed �vm for a puller (P ¼ �0:3) and b Pusher (P ¼ 0:3) at Rep= 0.1. Regions
I: centerline upstream swimming, II: upstream swinging, III: downstream swinging, and IV: tumbling.
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which also influence their dynamics in a Poiseuille flow17.
Adding them to the current work is not straightforward since
fluid inertia induces an orientational drift70. The hydrodynamics
of the swimming motion might also add an active component to
the Jeffery orbits. We also stress that thermal or biological noise
acting on the swimmer orientation will disturb the motion in the
limit cycles and also induce transitions between coexisting states
but not influence the principal behavior outlined in this article.
Finally, we note that incorporation of higher-order multipoles
can provide rich dynamical behavior near the walls in the pre-
sence of inertia71.

Methods
Problem formulation. To evaluate the lift velocities, we work in reference frame that
translates with the swimmer ð~x;~y;~zÞ. Supplementary Note 1 and Supplementary
Fig. 1 show the non-dimensional notation, where s= d/2w and s/κ= d/a denotes the
dimensionless distance from the bottom wall in units of particle radius a. For sim-
plicity, we temporarily drop the tilde~notation. We divide the full velocity field
vactual= v+ v∞ into the background flow field v∞ and the disturbance field v, and
then obtain the equations governing the disturbance field from the continuity and
Navier–Stokes equations:

∇ � v ¼ 0; Repðv1 � ∇v þ v � ∇v1 þ v � ∇vÞ ¼ �∇pþ ∇2v: ð7Þ
The hydrodynamic equations follow a quasi-steady description as the time scale
associated with swimming (a/vs ~ 1s) is much larger than the characteristic vortex
diffusion time (a2/ν ~ 10−4s). The above equations have been non-dimensionalized
using a, κvm, μκvm/a as the characteristic scales for length, velocity, and pressure,
respectively. The definitions of these dimensional parameters a (particle size),
κ= a/2w, and vm (maximum flow velocity) are consistent with the article. In our case,
v∞ is the undisturbed Poiseuille flow velocity in the frame of reference translating/co-
moving with the particle

v1 ¼ αþ βx þ γx2
� �

ez � Up; ð8Þ
where Up is the total velocity of the swimmer, i.e., swimming velocity vs plus advection
due to the Poiseuille flow and the lift velocities. The constants α, β, and γ are:

α ¼ 4s 1� sð Þ=κ; β ¼ 4 1� 2sð Þ; γ ¼ �4κ; ð9Þ
where β and γ represent the shear and curvature of the background flow, respectively.

The boundary conditions of the disturbance field are:

v ¼ vθ þΩs ´ r � v1 at r ¼ 1; ð10aÞ

v ¼ 0 at walls ; ð10bÞ

v ! 0 as fy; zg ! 1: ð10cÞ
Here, the walls are located at x=−s/κ and x= (1− s)/κ, and vθ represents the
prescribed tangential surface velocity of the spherical microswimmer.

We find the inertial lift or migration velocities at O(Rep) using a regular
perturbation expansion. For small values of Rep, the disturbance field variables are
expanded as:

ξ ¼ ξ0 þ Rep ξ1 þ � � � : ð11Þ
Here, ξ is a generic field variable that represents velocity (v), pressure (p),
translational (Up), and angular velocity (Ωp). We substitute (11) in the equations
governing the disturbance field (7), and obtain the problem at O(1) (i.e. Stokes
problem) as

∇ � v0 ¼ 0;

∇2v0 � ∇p0 ¼ 0;

v0 ¼ vθ þ Ωp0 ´ r � v10 at r ¼ 1;

v0 ¼ 0 at walls ;

v0 ! 0 as fy; zg ! 1;

9>>>>>>=
>>>>>>;

ð12Þ

and at O(Rep) as:

∇ � v1 ¼ 0;

∇2v1 � ∇p1 ¼ ðv10 � ∇v0 þ v0 � ∇v10 þ v0 � ∇v0Þ;
v1 ¼ Up1 þ Ωp1 ´ r at r ¼ 1;

v1 ¼ 0 at walls ;

v1 ! 0 as fy; zg ! 1:

9>>>>>>=
>>>>>>;

ð13Þ

In (12), v10 ¼ αþ βx þ γx2
� �

ez � Up0.
Ho and Leal37, in their seminal work, used the reciprocal theorem to derive

a volume integral expression for the migration velocity associated with the

O(Rep) Eq. 13:

�Rep
6π

Z
Vf

ut � v10 � ∇v0 þ v0 � ∇v10 þ v0 � ∇v0
� �

dV : ð14Þ

The auxiliary or test field (vt, pt) is associated with a sphere moving in the
positive x-direction (towards the upper wall) with unit velocity in a quiescent
fluid:

vtðrÞ ¼ 3
4

ex þ
xr
r2

� 	 1
r
þ 1

4
ex �

3xr
r2

� �
1
r3
: ð15Þ

The reciprocal theorem makes it relatively easy to find lift velocities at O(Rep),
as we can solve the creeping flow problem (12) using well-established methods61,72

and directly substitute its solution in (14). In other words, we do not need to solve
the O(Rep) problem (13) to obtain the O(Rep) lift.

Lift velocity. We now use the reciprocal theorem integral (14) for evaluating the
swimming lift of a source–dipole swimmer. We explicitly choose the axisymmetric
neutral squirmer, which has the surface velocity field vθ ¼ B1 sin θ eθ , where θ is
the polar angle and eθ the corresponding base vector. The swimming velocity is
directly related to this squirmer coefficient: vs= 2B1/352,73. The solution to the O(1)
Stokes problem (12) in the Poiseuille background flow is obtained as (4). The first
part in the above expression is the swimmer-generated source–dipole, and the
second part is the stresslet and the higher-order octupole correction due to the local
shear flow74. e∞ is the rate of strain tensor for the background flow, which
amounts to e∞= (∇ v∞+∇ v∞†)/2 (here † represents transpose). For the case of a
small neutral swimmer, we can neglect the curvature of the background flow, that
would bring in a term proportional to γ ~O(κ) in Eq. 4. Additionally, the previous
work41 suggests that the hydrodynamic multipoles arising from the curvature have
a negligible effect on the lift of a source–dipole swimmer.

It remains to calculate e∞ for the Poiseuille flow of Eq. 8 in zeroth order of Rep.
The total velocity of the force-free swimmer in the Stokes regime is
Up0 ¼ ~vs þ αez , where the second part is obtained by the fact that the swimmer at
x= 0 is advected by the flow. To complete the expression of v10 , we substitute Up 0

in (8), and obtain:

v10 ¼ ðβxÞez � ~vs ð16Þ
which gives ½e1�xz ¼ ½e1�zx ¼ β=2.

Now, we evaluate the lift integral arising from the active nature of the swimmer
(in addition to the passive lift). Since the source–dipole field of the neutral
swimmer decays quickly away from the swimmer (~1/r3), we can neglect the wall
corrections in the lift velocity integral (14). In the context of electrophoresis,
Choudhary et al.41 showed that accounting for such wall corrections hardly affects
the lift and only becomes noticeable very near the walls (see41, p. 877). That work
also showed that higher-order effects due to curvature are negligible in the case of a
source dipole41, p. 879. Hence, we evaluate the lift velocity integral by substituting
(16) and (4) in (14). Integrating over the infinite space, we obtain the swimming lift
velocity in units of vs as

F swim ¼ ð7=24ÞRepβ cosψ; ð17Þ
expressed in the co-moving frame of the swimmer. See Supplementary Software 1
for the details of evaluation. In Eq. 17 the contribution from the disturbance-
disturbance interaction term of the integral (v0 ⋅ ∇ v0) is ð49=360ÞRepβ cosψ and
the contribution arising from the disturbance-flow interaction term
(v10 � ∇v0 þ v0 � ∇v10 ) is ð7=45ÞRepβ cosψ. Note, to calculate the passive inertial
lift, one must account for wall interactions and the curvature γ in v10 .

For a force–dipole swimmer, we obtain the lift velocity in the units of vs as:

F swim � 0:5 Rep P ½�1þ 8ðs� s2Þ� sin 2ψ: ð18Þ
The evaluation is detailed in Supplementary Note 3. Supplementary Fig. 2 shows
fits for the swimming-lift profile of a pusher.

The final expressions of the swimming and passive lift velocities in the channel
frame of reference can be obtained by a transformation of particle-wall distance s to
the channel x coordinate: s= (1+ x)/2. Using the definition of β from Eq. 9, Eq. 17
is obtained as �ð7=6ÞRep x cosψ. Similarly, we obtain the swimming lift velocity of

a force–dipole swimmer as 0:5 Rep P 1� 2x2
� �

sin 2ψ.
Following the prior works on inertial migration37,41,75, we reproduce the lift

force profile for a passive neutrally buoyant particle suspended in Poiseuille flow,
which needs the numerical evaluation of integrals. Supplementary Fig. 3 shows the
comparison of our reproduced results for passive lift with Vasseur and Cox75 and
also illustrates the fitted function used in the article:

Fpassive ¼ Repκ�vm x 1� x2

x2eq

 !
: ð19Þ

Data availability
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