5,784 research outputs found

    Sensitive and Precise Quantification of Insulin-Like mRNA Expression in Caenorhabditis elegans

    Get PDF
    Insulin-like signaling regulates developmental arrest, stress resistance and lifespan in the nematode Caenorhabditis elegans. However, the genome encodes 40 insulin-like peptides, and the regulation and function of individual peptides is largely uncharacterized. We used the nCounter platform to measure mRNA expression of all 40 insulin-like peptides as well as the insulin-like receptor daf-2, its transcriptional effector daf-16, and the daf-16 target gene sod-3. We validated the platform using 53 RNA samples previously characterized by high density oligonucleotide microarray analysis. For this set of genes and the standard nCounter protocol, sensitivity and precision were comparable between the two platforms. We optimized conditions of the nCounter assay by varying the mass of total RNA used for hybridization, thereby increasing sensitivity up to 50-fold and reducing the median coefficient of variation as much as 4-fold. We used deletion mutants to demonstrate specificity of the assay, and we used optimized conditions to assay insulin-like gene expression throughout the C. elegans life cycle. We detected expression for nearly all insulin-like genes and find that they are expressed in a variety of distinct patterns suggesting complexity of regulation and specificity of function. We identified insulin-like genes that are specifically expressed during developmental arrest, larval development, adulthood and embryogenesis. These results demonstrate that the nCounter platform provides a powerful approach to analyzing insulin-like gene expression dynamics, and they suggest hypotheses about the function of individual insulin-like genes

    The Gut Microbiota Composition in Dichorionic Triplet Sets Suggests a Role for Host Genetic Factors

    Get PDF
    peer-reviewedMonozygotic and dizygotic twin studies investigating the relative roles of host genetics and environmental factors in shaping gut microbiota composition have produced conflicting results. In this study, we investigated the gut microbiota composition of a healthy dichorionic triplet set. The dichorionic triplet set contained a pair of monozygotic twins and a fraternal sibling, with similar pre- and post-natal environmental conditions including feeding regime. V4 16S rRNA and rpoB amplicon pyrosequencing was employed to investigate microbiota composition, and the species and strain diversity of the culturable bifidobacterial population was also examined. At month 1, the monozygotic pair shared a similar microbiota distinct to the fraternal sibling. By month 12 however, the profile was more uniform between the three infants. Principal coordinate analysis (PCoA) of the microbiota composition revealed strong clustering of the monozygotic pair at month 1 and a separation of the fraternal infant. At months 2 and 3 the phylogenetic distance between the monozygotic pair and the fraternal sibling has greatly reduced and by month 12 the monozygotic pair no longer clustered separately from the fraternal infant. Pulse field gel electrophoresis (PFGE) analysis of the bifidobacterial population revealed a lack of strain diversity, with identical strains identified in all three infants at month 1 and 12. The microbiota of two antibiotic-treated dichorionic triplet sets was also investigated. Not surprisingly, in both triplet sets early life antibiotic administration appeared to be a major determinant of microbiota composition at month 1, irrespective of zygosity. By month 12, early antibiotic administration appeared to no longer exert such a strong influence on gut microbiota composition. We hypothesize that initially host genetics play a significant role in the composition of an individual’s gut microbiota, unless an antibiotic intervention is given, but by month 12 environmental factors are the major determinant.This study was performed as part of the INFANTMET project (10/RD/Infantmet/MFRC/705) and was funded by the Government of Ireland's Department of Agriculture Fisheries and in part by Alimentary Pharmabiotic Centre. KM is a Teagasc Walsh Fellow. CS, RPR and PWOT are members of The Alimentary Pharmabiotic Centre, which is a Centre for Science and Technology (CSET) funded by the Science Foundation Ireland (SFI), through the Irish Government’s National Development Plan (Grant no. 02/CE/B124 and 07/CE/B1368)

    2015 researcher's mini-symposium

    Get PDF
    Postgraduate researchers from the Faculties of Science, Engineering, Medicine & Surgery and Health Sciences gathered for a forum to present their research interests. The symposium was held in the afternoon of 30 January 2015 in the Engineering Lecture Theatre. The symposium promoted multi-disciplinary networking between various university faculties. Participants were invited based on research topic diversity and gender balance.peer-reviewe

    The Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: A Pilot Study

    Get PDF
    peer-reviewedHuman milk contains a diverse array of bioactives and is also a source of bacteria for the developing infant gut. The aim of this study was to characterize the bacterial communities in human milk and infant faeces over the first 3 months of life, in 10 mother-infant pairs. The presence of viable Bifidobacterium and Lactobacillus in human milk was also evaluated. MiSeq sequencing revealed a large diversity of the human milk microbiota, identifying over 207 bacterial genera in milk samples. The phyla Proteobacteria and Firmicutes and the genera Pseudomonas, Staphylococcus and Streptococcus were the predominant bacterial groups. A core of 12 genera represented 81% of the microbiota relative abundance in milk samples at week 1, 3 and 6, decreasing to 73% at week 12. Genera shared between infant faeces and human milk samples accounted for 70–88% of the total relative abundance in infant faecal samples, supporting the hypothesis of vertical transfer of bacteria from milk to the infant gut. In addition, identical strains of Bifidobacterium breve and Lactobacillus plantarum were isolated from the milk and faeces of one mother-infant pair. Vertical transfer of bacteria via breastfeeding may contribute to the initial establishment of the microbiota in the developing infant intestine

    Metazoan Operons Accelerate Recovery from Growth-Arrested States

    Get PDF
    Existing theories explain why operons are advantageous in prokaryotes, but their occurrence in metazoans is an enigma. Nematode operon genes, typically consisting of growth genes, are significantly upregulated during recovery from growth-arrested states. This expression pattern is anticorrelated to nonoperon genes, consistent with a competition for transcriptional resources. We find that transcriptional resources are initially limiting during recovery and that recovering animals are highly sensitive to any additional decrease in transcriptional resources. We provide evidence that operons become advantageous because, by clustering growth genes into operons, fewer promoters compete for the limited transcriptional machinery, effectively increasing the concentration of transcriptional resources and accelerating recovery. Mathematical modeling reveals how a moderate increase in transcriptional resources can substantially enhance transcription rate and recovery. This design principle occurs in different nematodes and the chordate C. intestinalis. As transition from arrest to rapid growth is shared by many metazoans, operons could have evolved to facilitate these processes

    Integrin Signaling in Oligodendrocytes and Its Importance in CNS Myelination

    Get PDF
    Multiple sclerosis is characterized by repeated demyelinating attacks of the central nervous system (CNS) white matter tracts. To tailor novel therapeutics to halt or reverse disease process, we require a better understanding of oligodendrocyte biology and of the molecular mechanisms that initiate myelination. Cell extrinsic mechanisms regulate CNS myelination through the interaction of extracellular matrix proteins and their transmembrane receptors. The engagement of one such receptor family, the integrins, initiates intracellular signaling cascades that lead to changes in cell phenotype. Oligodendrocytes express a diverse array of integrins, and the expression of these receptors is developmentally regulated. Integrin-mediated signaling is crucial to the proliferation, survival, and maturation of oligodendrocytes through the activation of downstream signaling pathways involved in cytoskeletal remodeling. Here, we review the current understanding of this important signaling axis and its role in oligodendrocyte biology and ultimately in the myelination of axons within the CNS

    Job crafting and salesperson performance

    Get PDF
    The tasks that define any given job at the workplace level are never rigid. Management changes, advancements in technology, even a pandemic can change the conditions, boundaries, relationships, and tasks of a job. Creating the need for job crafting and its surrounding methodologies at an individual and even organizational level. The current scholarship on Job Crafting research centers mainly on the consequences of job crafting in general worker settings (service and retail). The present study integrates important variables (controls and adaptive selling behaviors) and a potential influencer self-construal (independent and interdependent), on job crafting, concentrated on salespeople and their related performance. These new variables can help better explain if salespeople job craft and, if so, are they influenced by adaptive selling behaviors, controls, and/or self-construal. This current study can help provide guidance to companies and salespeople alike in sharing the influence of these variables on job crafting and ultimately help lead salespeople to success and performance advantages utilizing this new knowledge

    Is Blood Flow Restriction Training Superior for the Limitation of Hamstring and Quadriceps Atrophy After Anterior Cruciate Ligament Reconstruction? A Review of Randomized Controlled Trials

    Get PDF
    Post operative recovery from Anterior Cruciate Ligament Reconstruction (ACLR) includes extensive rehabilitation of 6-9 months with return to sport/activity at 12 months Rehabilitation is initiated shortly following surgery to limit quadriceps and hamstring atrophy, maximizing long term tibiofemoral joint stability and functional outcomes The best way to achieve improved muscle strength and prevent atrophy is progressive overload training, however, these activities cannot be performed post operatively without risk to the reconstructed knee Blood Flow Restriction Training (BFR) involves impairing the blood supply for short periods through the application of an air-filled bladder or cuff to restrict the venous drainage of the region of choice BFR allows the surgically repaired limb to be safely stressed after ACLR without added reinjury potential of progressive overload training BFR achieves this elevated stress via systemic hormone production, cell swelling, production of reactive oxygen species, and increased fast twitch fiber recruitment along with stimulation of anabolic and anti-catabolic cell signaling pathways, particularly the mTOR (mechanistic target of rapamycin) protein kinase pathway There is inconsistency of methods, outcome measures and results in literature comparing the outcomes of BFR vs Traditional Post Operative Rehabilitation (TPR

    Exploring a search for long-duration transient gravitational waves associated with magnetar bursts

    Full text link
    Soft gamma repeaters and anomalous X-ray pulsars are thought to be magnetars, neutron stars with strong magnetic fields of order 1013\mathord{\sim} 10^{13}--1015gauss10^{15} \, \mathrm{gauss}. These objects emit intermittent bursts of hard X-rays and soft gamma rays. Quasiperiodic oscillations in the X-ray tails of giant flares imply the existence of neutron star oscillation modes which could emit gravitational waves powered by the magnetar's magnetic energy reservoir. We describe a method to search for transient gravitational-wave signals associated with magnetar bursts with durations of 10s to 1000s of seconds. The sensitivity of this method is estimated by adding simulated waveforms to data from the sixth science run of Laser Interferometer Gravitational-wave Observatory (LIGO). We find a search sensitivity in terms of the root sum square strain amplitude of hrss=1.3×1021Hz1/2h_{\mathrm{rss}} = 1.3 \times 10^{-21} \, \mathrm{Hz}^{-1/2} for a half sine-Gaussian waveform with a central frequency f0=150Hzf_0 = 150 \, \mathrm{Hz} and a characteristic time τ=400s\tau = 400 \, \mathrm{s}. This corresponds to a gravitational wave energy of EGW=4.3×1046ergE_{\mathrm{GW}} = 4.3 \times 10^{46} \, \mathrm{erg}, the same order of magnitude as the 2004 giant flare which had an estimated electromagnetic energy of EEM=1.7×1046(d/8.7kpc)2ergE_{\mathrm{EM}} = \mathord{\sim} 1.7 \times 10^{46} (d/ 8.7 \, \mathrm{kpc})^2 \, \mathrm{erg}, where dd is the distance to SGR 1806-20. We present an extrapolation of these results to Advanced LIGO, estimating a sensitivity to a gravitational wave energy of EGW=3.2×1043ergE_{\mathrm{GW}} = 3.2 \times 10^{43} \, \mathrm{erg} for a magnetar at a distance of 1.6kpc1.6 \, \mathrm{kpc}. These results suggest this search method can probe significantly below the energy budgets for magnetar burst emission mechanisms such as crust cracking and hydrodynamic deformation
    corecore