383 research outputs found

    Tri-Frequency Synthetic Aperture Radar for the Measurements of Snow Water Equivalent

    Get PDF
    A new airborne synthetic aperture radar (SAR) system was recently developed for the estimation of snow water equivalent (SWE). The radar is part of the SWESARR (Snow Water Equivalent Synthetic Aperture Radar and Radiometer) instrument, an active passive microwave system specifically designed for the accurate estimation of SWE. The dual polarization (VV, VH) radar operates at three frequency bands (9.65 GHz, 13.6 GHz, and 17.25 GHz), with bandwidths of up to 200 MHz. The radar flew its first flight campaign in November 2019, along with SWESARRs - already operational radiometer. The radar collected comprehensive data sets over various terrains that show a successful system performance. The inst slated to participate in future SnowEx campaigns

    Tri-Frequency Synthetic Aperture Radar for the Measurements of Snow Water Equivalent

    Get PDF
    SWESARR (Snow Water Equivalent Synthetic Aperture Radar and Radiometer) is an airborne instrument developed at the NASA Goddard Space Flight Center for the retrieval of Snow Water Equivalent. SWESARR was specifically designed to measure co-located active and passive signals using a high resolution and multi-frequency Synthetic Aperture Radar (SAR) and a multifrequency radiometer. SWESARRs Synthetic Aperture Radar (SAR) system is made up of three independent radar units that operate in the X, Ku-Low, and Ku-High bands with bandwidths up to 200 MHz, and acquires data in two polarizations (dual-polarization radar). The difference in sensitivity of the backscatter signals to snow microstructure, in conjunctions with radiometer measurements, permits an accurate estimation of the snow water equivalent (SWE)

    A surface registration approach for video-based analysis of intraoperative brain surface deformations.

    Get PDF
    Anatomical intra operative deformation is a major limitation of accuracy in image guided neurosurgery. Approaches to quantify these deforamations based on 3D reconstruction of surfaces have been introduced. For accurate quantification of surface deformation, a robust surface registration method is required. In this paper, we propose a new surface registration for video-based analysis of intraoperative brain deformations. This registration method includes three terms: the first term is related to image intensities, the second to Euclidean distance and the third to anatomical landmarks continuously tracked in 2D video. This new surface registration method can be used with any cortical surface textured point cloud computed by stereoscopic or laser range approaches. We have shown the global method, including textured point cloud reconstruction, had a precision within 2 millimeters, which is within the usual rigid registration error of the neuronavigation system before deformations

    N-cadherin and β1-integrins cooperate during the development of the enteric nervous system

    Get PDF
    AbstractCell adhesion controls various embryonic morphogenetic processes, including the development of the enteric nervous system (ENS). Ablation of β1-integrin (β1−/−) expression in enteric neural crest cells (ENCC) in mice leads to major alterations in the ENS structure caused by reduced migration and increased aggregation properties of ENCC during gut colonization, which gives rise to a Hirschsprung's disease-like phenotype.In the present study, we examined the role of N-cadherin in ENS development and the interplay with β1 integrins during this process. The Ht–PA–Cre mouse model was used to target gene disruption of N-cadherin and β1 integrin in migratory NCC and to produce single- and double-conditional mutants for these two types of adhesion receptors.Double mutation of N-cadherin and β1 integrin led to embryonic lethality with severe defects in ENS development. N-cadherin-null (Ncad−/−) ENCC exhibited a delayed colonization in the developing gut at E12.5, although this was to a lesser extent than in β1−/− mutants. This delay of Ncad−/− ENCC migration was recovered at later stages of development. The double Ncad−/−; β1−/− mutant ENCC failed to colonize the distal part of the gut and there was more severe aganglionosis in the proximal hindgut than in the single mutants for N-cadherin or β1-integrin. This was due to an altered speed of locomotion and directionality in the gut wall. The abnormal aggregation defect of ENCC and the disorganized ganglia network in the β1−/− mutant was not observed in the double mutant. This indicates that N-cadherin enhances the effect of the β1−integrin mutation and demonstrates cooperation between these two adhesion receptors during ENS ontogenesis.In conclusion, our data reveal that N-cadherin is not essential for ENS development but it does modulate the modes of ENCC migration and acts in concert with β1−integrin to control the proper development of the ENS

    Development of a rapid, antimicrobial susceptibility test for E. coli based on low-cost, screen-printed electrodes

    Get PDF
    Antibiotic resistance has been cited by the World Health Organisation (WHO) as one of the greatest threats to public health. Mitigating the spread of antibiotic resistance requires a multipronged approach with possible interventions including faster diagnostic testing and enhanced antibiotic stewardship. This study employs a low-cost diagnostic sensor test to rapidly pinpoint the correct antibiotic for treatment of infection. The sensor comprises a screen-printed gold electrode, modified with an antibiotic-seeded hydrogel to monitor bacterial growth. Electrochemical growth profiles of the common microorganism, Escherichia coli (E. coli) (ATCC 25922) were measured in the presence and absence of the antibiotic streptomycin. Results show a clear distinction between the E. coli growth profiles depending on whether streptomycin is present, in a timeframe of ≈2.5 h (p < 0.05), significantly quicker than the current gold standard of culture-based antimicrobial susceptibility testing. These results demonstrate a clear pathway to a low cost, phenotypic and reproducible antibiotic susceptibility testing technology for the rapid detection of E. coli within clinically relevant concentration ranges for conditions such as urinary tract infections

    ALISSA: an automated live-cell imaging system for signal transduction analyses

    Get PDF
    Probe photobleaching and a specimen’s sensitivity to phototoxicity severely limit the number of possible excitation cycles in time-lapse fluorescent microscopy experiments. Consequently, when a study of cellular processes requires measurements over hours or days, temporal resolution is limited, and spontaneous or rapid events may be missed, thus limiting conclusions about transduction events. We have developed ALISSA, a design framework and reference implementation for an automated live-cell imaging system for signal transduction analysis. It allows an adaptation of image modalities and laser resources tailored to the biological process, and thereby extends temporal resolution from minutes to seconds. The system employs online image analysis to detect cellular events that are then used to exercise microscope control. It consists of a reusable image analysis software for cell segmentation, tracking, and time series extraction, and a measurement-specific process control software that can be easily adapted to various biological settings. We have applied the ALISSA framework to the analysis of apoptosis as a demonstration case for slow onset and rapid execution signaling. The demonstration provides a clear proof-of-concept for ALISSA, and offers guidelines for its application in a broad spectrum of signal transduction studies

    Correlated Multimodal Imaging in Life Sciences:Expanding the Biomedical Horizon

    Get PDF
    International audienceThe frontiers of bioimaging are currently being pushed toward the integration and correlation of several modalities to tackle biomedical research questions holistically and across multiple scales. Correlated Multimodal Imaging (CMI) gathers information about exactly the same specimen with two or more complementary modalities that-in combination-create a composite and complementary view of the sample (including insights into structure, function, dynamics and molecular composition). CMI allows to describe biomedical processes within their overall spatio-temporal context and gain a mechanistic understanding of cells, tissues, diseases or organisms by untangling their molecular mechanisms within their native environment. The two best-established CMI implementations for small animals and model organisms are hardware-fused platforms in preclinical imaging (Hybrid Imaging) and Correlated Light and Electron Microscopy (CLEM) in biological imaging. Although the merits of Preclinical Hybrid Imaging (PHI) and CLEM are well-established, both approaches would benefit from standardization of protocols, ontologies and data handling, and the development of optimized and advanced implementations. Specifically, CMI pipelines that aim at bridging preclinical and biological imaging beyond CLEM and PHI are rare but bear great potential to substantially advance both bioimaging and biomedical research. CMI faces three mai

    2014 Future Earth Young Scientists Conference on Integrated Science and Knowledge Co-Production for Ecosystems and Human Well-Being

    Get PDF
    Effective integration in science and knowledge co-production is a challenge that crosses research boundaries, climate regions, languages and cultures. Early career scientists are crucial in the identification of, and engagement with, obstacles and opportunities in the development of innovative solutions to complex and interconnected problems. On 25-31 May 2014, International Council for Science and International Social Science Council, in collaboration with the International Network of Next-Generation Ecologists and Institute for New Economic Thinking: Young Scholars Initiative, assembled a group of early career researchers with diverse backgrounds and research perspectives to reflect on and debate relevant issues around ecosystems and human wellbeing in the transition towards green economy, funded by the German Research Foundation, at Villa Vigoni, Italy. As a group of young scientists, we have come to a consensus that collaboration and communication among a diverse group of peers from different geographic regions could break down the barriers to multi-disciplinary research designed to solve complex global-scale problems. We also propose to establish a global systematic thinking to monitor global socio-ecological systems and to develop criteria for a “good” anthropocene. Finally, we aim to bridge gaps among research, the media, and education from a governance perspective linking with “sustainable development goals”

    Dreaming and insight

    Get PDF
    This paper addresses claims that dreams can be a source of personal insight. Whereas there has been anecdotal backing for such claims, there is now tangential support from findings of the facilitative effect of sleep on cognitive insight, and of REM sleep in particular on emotional memory consolidation. Furthermore, the presence in dreams of metaphorical representations of waking life indicates the possibility of novel insight as an emergent feature of such metaphorical mappings. In order to assess whether personal insight can occur as a result of the consideration of dream content, 11 dream group discussion sessions were conducted which followed the Ullman Dream Appreciation technique, one session for each of 11 participants (10 females, 1 male; mean age = 19.2 years). Self-ratings of deepened self-perception and personal gains from participation in the group sessions showed that the Ullman technique is an effective procedure for establishing connections between dream content and recent waking life experiences, although wake life sources were found for only 14% of dream report text. The mean Exploration-Insight score on the Gains from Dream Interpretation questionnaire was very high and comparable to outcomes from the well-established Hill (1996) therapist-led dream interpretation method. This score was associated between-subjects with pre-group positive Attitude Toward Dreams (ATD). The need to distinguish “aha” experiences as a result of discovering a waking life source for part of a dream, from “aha” experiences of personal insight as a result of considering dream content, is discussed. Difficulties are described in designing a control condition to which the dream report condition can be compared

    Targeted removal of blood cancer cells from mixed cell populations by cell recognition with matching particle imprints

    Get PDF
    We report a new approach for separation of blood cancer cells from healthy white blood cells based on cell recognition by surface functionalised particle imprints. We prepared polymeric particle imprints from a layer of suspension of monodisperse PMMA microbeads which closely match the size of in vitro cultured human leukaemia cells (HL60). The imprints were replicated on a large scale with UV curable polyurethane resin using nanoimprinting lithography and surface functionalized with a cationic polymer, a branched polyethylene imine (bPEI), and a Pluronic surfactant, Poloxamer 407, to engineer a weak attraction towards the cells. The latter is amplified several orders of magnitude when a cell of a closely matching size and shape fits into the imprint cavity which multiplies the contact area between the cell surface and the imprint. The particle imprints were optimised for their specificity toward blood cancer cells by treatment with oxygen plasma and then subsequent coatings with bPEI and Poloxamer 407 with various functionalisation concentrations. We tested the surface functionalised imprints for their specificity in retaining in vitro cultured human leukaemic cells (HL60) over healthy human peripheral blood mononuclear cells (PBMCs) in a flow through chamber. The effect of the flushing flow rate of the mixed cell suspension over the particle imprint and the imprint length were also investigated. At each step the selectivity towards HL60 was assessed. Selective isolation of an increased amount of HL60 tumour cells over PBMC was ultimately achieved as a function of the cell seeding ratio on the particle imprint. The effect is attributed to the substantial size difference between the HL60 cell and the PBMCs. The data presented show that relatively inexpensive PMMA microbeads imprints can be utilised as a cell separation technique which could ultimately lead to novel therapies for removal of neoplastic cells from the peripheral blood of acute myeloid leukaemia patients
    corecore