18,786 research outputs found

    Urban Poverty and Health in Developing Countries: Household and Neighborhood Effects

    Get PDF
    In the U.S. and other high-income countries, where most of the population lives in urban areas, there is intense scholarly and program interest in the effects of household and neighborhood living standards on health. Yet very few studies of developing-country cities have examined these issues. This paper investigates whether in these cities, the health of women and young children is influenced by both household and neighborhood standards of living. Using data from the urban samples of some 85 Demographic and Health surveys, and modelling living standards using factor-analytic MIMIC methods, we find, first, that the neighborhoods of poor households are more heterogeneous than is often asserted. To judge from our results, it appears that as a rule, poor urban households do not tend to live in uniformly poor communities; indeed, about 1 in 10 of a poor household's neighbors is relatively affluent, belonging to the upper quartile of the urban distribution of living standards. Do household and neighborhood living standards influence health? Applying multivariate models with controls for other socioeconomic variables, we discover that household living standards have a substantial influence on three measures of health: unmet need for modern contraception; birth attendance by doctors, nurses, or trained midwives; and children's height for age. Neighborhood living standards exert significant additional influence on health in many of the surveys we examine, especially in birth attendance. There is considerable evidence, then, indicating that both household and neighborhood living standards can make a substantively important difference to health.poverty, health, developing countries, urban, factor analysis, neighborhood

    The reionization of the universe: The feedback of galaxy formation on the intergalactic medium

    Get PDF
    The thermal and ionization evolution of a uniform intergalactic medium (IGM) composed of H and He, undergoing reionization, including the mean effect of gas clumps embedded in a smoothly distributed ambient gas were calculated. The rate equations for ionization and recombination were solved together with the equations of energy conservation, including the effects of cosmological expansion, radiative and Compton cooling, and the diffuse flux emitted by the gas, and radiative transfer. The contribution to the continuum opacity of the universe due to the observed quasar absorption line clouds (QALC'S) were included. A variety of sources of photoionization, including quasars and primeval galaxies, as well as the possibility that hydrodynamical processes deposit thermal energy in the IGM were considered. Applications of these calculations including the evolution of the Ly-alpha forest clouds are described. A self-consistent treatment of the thermal and ionization history of the intergalactic medium (IGM) must take account of the growth of structure in the universe, since the mean density of the IGM corresponds primarily to the time-varying uncollapsed fraction of the baryon-electron component of the matter, and the collapsed fraction, in turn, can have a feedback effect on this uncollapsed fraction by releasing ionizing radiation and thermal energy and by contributing to the opacity of the universe. The coupled evolution of the IGM and the emerging structure with a special focus on the reionization of the IGM, which is believed to have been completed by some redshift z is approximately greater than 4, as inferred from the absence of the Gunn-Peterson effect in the spectra of high z quasars, are studied. The results and implications of detailed, numerical calculations of the thermal and ionization balance and radiative transfer in a uniform IGM of H and He, including the mean effect of an evolving distribution of gas clumps embedded in a smoothly distributed ambient gas is described

    The breakup of the Southern Hemisphere spring polar ozone and temperature minimums from 1979 to 1987

    Get PDF
    The purpose of this study is to quantify the observations of the polar vortex breakup. The data used in this study consist of Total Ozone Mapping Spectrometer (TOMS) data, and National Meteorological Center (NMC) analyses. The final warming is diagnosed using the difference between zonal means at 80 degrees and 50 degrees S for temperature, ozone, and layer mean temperature. The polar vortex breakup can also be diagnosed by the onset of weak zonal mean zonal winds (i.e., u, overbar denotes a zonal average) at 60 degrees S. Computations of the polar vortex breakdown date using NMC meteorological data and TOMS total ozone data indicate that the breakdown is occurring later in the spring in the lowest portion of the stratosphere. At altitudes above 100 mb, the large interannual variance of the breakdown date renders any trend determination of the breakdown date difficult. Individual plots of TOMS total ozone indicate that the total ozone minimum remains intact for a longer period of time than is observed in earlier years

    Fertility and Investments in Human Capital: Estimates of the Consequences of Imperfect Fertility Control in Malaysia

    Get PDF
    In this paper, we describe and utilize methods to estimate the consequences for children's schooling and birthweight of the exogenous variability in the supply of births in one low income country, Malaysia. The method utilizes information on contraceptive techniques employed by couples to estimate directly the technology of reproduction and provides a means of disentangling the biological and demand factors that contribute to the variation in fertility across couples under a regime of imperfect fertility control. Our results suggest that imperfect fertility control significantly influences both the average schooling attainment and birthweight of children in Malaysia, with couples having above-average propensities to conceive reporting higher levels of actual fertility, significantly lower expectations of and actual schooling attainment for their children, and lower birthweight children, on average, due to smaller intervals between births.Labor and Human Capital,

    The Prevalence and Control of Bacillus and Related Spore-Forming Bacteria in the Dairy Industry

    Get PDF
    peer-reviewedMilk produced in udder cells is sterile but due to its high nutrient content, it can be a good growth substrate for contaminating bacteria. The quality of milk is monitored via somatic cell counts and total bacterial counts, with prescribed regulatory limits to ensure quality and safety. Bacterial contaminants can cause disease, or spoilage of milk and its secondary products. Aerobic spore-forming bacteria, such as those from the genera Sporosarcina, Paenisporosarcina, Brevibacillus, Paenibacillus, Geobacillus and Bacillus, are a particular concern in this regard as they are able to survive industrial pasteurization and form biofilms within pipes and stainless steel equipment. These single or multiple-species biofilms become a reservoir of spoilage microorganisms and a cycle of contamination can be initiated. Indeed, previous studies have highlighted that these microorganisms are highly prevalent in dead ends, corners, cracks, crevices, gaskets, valves and the joints of stainless steel equipment used in the dairy manufacturing plants. Hence, adequate monitoring and control measures are essential to prevent spoilage and ensure consumer safety. Common controlling approaches include specific cleaning-in-place processes, chemical and biological biocides and other novel methods. In this review, we highlight the problems caused by these microorganisms, and discuss issues relating to their prevalence, monitoring thereof and control with respect to the dairy industry.NG is funded by the Teagasc Walsh Fellowship Scheme and through the Irish Dairy Levy funded project ‘Thermodur-Out.

    STIS Coronagraphic Imaging of Fomalhaut: Main Belt Structure and the Orbit of Fomalhaut b

    Full text link
    We present new optical coronagraphic data of the bright star Fomalhaut obtained with the HST in 2010/2012 using STIS. Fomalhaut b is recovered at both epochs to high significance. The observations include the discoveries of tenuous nebulosity beyond the main dust belt detected to at least 209 AU projected radius and a ~50 AU wide azimuthal gap in the belt northward of Fom b. The morphology of Fomalhaut b appears elliptical in the STIS detections. We show that residual noise in the processed data can plausibly result in point sources appearing extended. A MCMC analysis demonstrates that the orbit of Fom b is highly eccentric, with e=0.8+/-0.1, a=177+/-68 AU, and q = 32+/-24 AU. Fom b is apsidally aligned with the belt and 90% of allowed orbits have mutual inclination 36 deg or less. Fomalhaut b's orbit is belt-crossing in projection, but only 12% of possible orbits have nodes within a 25 AU wide belt annulus (133-158 AU). The high e invokes a dynamical history where Fom b may have experienced a significant dynamical interaction with a hypothetical planet Fomalhaut c, and the current orbital configuration may be relatively short-lived. The new value for the periastron distance diminishes the Hill radius of Fom b and any weakly bound satellite system surrounding a planet would be sheared and dynamically heated at periapse. We argue that Fom b's minimum mass is that of a dwarf planet in order for a circumplanetary satellite system to remain bound to a sufficient radius from the planet to be consistent with the dust scattered light hypothesis. Fom b may be optically bright because the recent passage through periapse and/or the ascending node has increased the erosion rates of planetary satellites. In the coplanar case, Fomalhaut b will collide with the main belt around 2032, and the subsequent emergent phenomena may help determine its physical nature.Comment: 49 Pages, 33 Figures, 5 Tables; Submitted to ApJ, Dec. 31, 201

    Estimating stratospheric temperature trends using satellite microwave radiances

    Get PDF
    The objective was to evaluate and intercompare stratospheric temperatures using Microwave Sounding Unit (MSU) data as a basis data set. The MSU, aboard the NOAA polar orbiter satellite series, provides twice daily global coverage over a layer (50-150 mb) at approximately a (170km)(exp 2) resolution. Conventional data sets will be compared to the satellite data in the lower stratosphere in order to assess their quality for trend computations

    Pressure buildup during CO2 injection in brine aquifers using the Forchheimer equation

    Get PDF
    If geo-sequestration of CO2 is to be employed as a key emissions reduction method in the global effort to mitigate climate change, simple yet robust screening of the risks of disposal in brine aquifers will be needed. There has been significant development of simple analytical and semi-analytical techniques to support screening analysis and performance assessment for potential carbon sequestration sites. These techniques have generally been used to estimate the size of CO2 plumes for the purpose of leakage rate estimation. A common assumption has been that both the fluids and the geological formation are incompressible. Consequently, calculation of pressure distribution requires the specification of an arbitrary radius of influence. In this talk, a new similarity solution is derived using the method of matched asymptotic expansions. By allowing for slight compressibility in the fluids and formation, the solution improves on previous work by not requiring the specification of an arbitrary radius of influence. A large-time approximation of the solution is then extended to account for non-Darcy inertial effects using the Forchheimer equation. Both solutions are verified by comparison with finite difference solutions. The results show that inertial losses will often be comparable, and sometimes greater than, the viscous Darcy-like losses associated with the brine displacement, although this is strongly dependent on formation porosity and permeability
    corecore